

 Navigation

 	
 index

 	
 next |

 	OpenXC CAN Translator 3.2.1 documentation

OpenXC CAN Translator

[image: _images/logo.png]

	Version:	3.2.1

	Web:	http://openxcplatform.com

	Documentation:	http://openxcplatform.com/cantranslator/

	Source:	http://github.com/openxc/cantranslator

About

The CAN translation module code runs on an Arduino-compatible microcontroller
connected to one or more CAN buses. It receives either all CAN messages or a
filtered subset, performs any unit conversion or factoring required and outputs
a generic version to a USB interface.

The firmware supports multiple microcontrollers.

Setup

	Installation
	Flashing a Pre-compiled Binary

	Building from Source

	Testing

	Bootloaders

	Dependencies

	Quick Start

	Supported Platforms
	PIC32

	LPC176x

Pre-built Binary

If you’ve downloaded a pre-built binary for a specific vehicle, see the
Flashing a Pre-compiled Binary section for instructions on how to flash your CAN
translator. Most users do not need to set up the full development described in
these docs.

A Windows driver for the USB interface is available in the conf/windows-driver [https://github.com/openxc/cantranslator/tree/master/conf/windows-driver]
folder. The driver supports both 32- and 64-bit Windows. The driver is generated
using the libusb-win32 [http://sourceforge.net/apps/trac/libusb-win32/wiki]
project.

CAN Message Definition

	CAN Message Definition

	JSON Mapping Format

Output Interfaces & Format

The OpenXC message format is specified and versioned separately from any of the
individual OpenXC interfaces or libraries, in the OpenXC Message Format [https://github.com/openxc/openxc-message-format] repository.

	UART Output

	USB Device Driver

Contributing

Please see our Contributing Guide [https://github.com/openxc/cantranslator/blob/master/CONTRIBUTING.mkd].

Mailing list

For discussions about the usage, development, and future of OpenXC, please join
the OpenXC mailing list [http://groups.google.com/group/openxc].

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/openxc/cantranslator/issues/

Related Projects

Python Library

The OpenXC Python library [https://github.com/openxc/openxc-python], in particular the openxc-dashboard tool, is
useful for testing the CAN translator with a regular computer, to verify the
data received from a vehicle before introducing an Android device. Documentation
for this tool (and the list of required dependencies) is available on the OpenXC
vehicle interface testing [http://openxcplatform.com/vehicle-interface/testing.html] page.

Android Library

The OpenXC Android library [https://github.com/openxc/openxc-android] is the primary entry point for new OpenXC
developers. More information on this library is available at in the
applications [http://openxcplatform.com/android/index.html] section of the OpenXC website [http://openxcplatform.com].

License

Copyright (c) 2012-2013 Ford Motor Company

Licensed under the BSD license.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

Installation

If you’ve downloaded a pre-built binary for a specific vehicle, see the
Flashing a Pre-compiled Binary section for instructions on how to flash your CAN
translator. Most users do not need to set up the full development described in
these docs.

	Flashing a Pre-compiled Binary

	Building from Source

	Testing

	Bootloaders

	Dependencies

Quick Start

Linux

	Install Git from your distribution’s package manager.

Ubuntu:

$ sudo apt-get install git

Arch Linux:

$ [sudo] pacman -S git

	Continue to the all platforms section.

Windows

	Install Cygwin [http://www.cygwin.com] and in the installer, select the
following packages:

gcc4, patchutils, git, unzip, python, python-argparse, check, curl,
libsasl2, ca-certificates

	Start a Cygwin Terminal.

	Configure the terminal to ignore Windows-style line endings in scripts:

$ set -o igncr && export SHELLOPTS

	Install the FTDI driver (the bootstrap script tries to take
care of this, but some developers are reporting that it doesn’t actaully get
installed)

	Continue to the all platforms section.

OS X

	Open the Terminal app.

	Install Homebrew [http://mxcl.github.com/homebrew/]:
ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

	Install Git with Homebrew (brew install git).

	Continue to the all platforms section.

All Platforms

	If your network uses an Internet proxy (e.g. a corporate network) set the
http_proxy and https_proxy environment variables:

$ export http_proxy=<your proxy>
$ export https_proxy=<your proxy>

	Clone the cantranslator [https://github.com/openxc/cantranslator]
repository:

$ git clone https://github.com/openxc/cantranslator

	Run the bootstrap.sh script:

$ cd cantranslator
$ script/bootstrap.sh

	If there were no errors, you are ready to compile. If
there are errors, follow the recommendations in the error messages. You may
need to manually install the dependencies if your environment is not in a
predictable state.

The bootstrap.sh script is tested in Cygwin, OS X Mountain Lion, Ubuntu
12.04 and Arch Linux - other operating systems may need to
install the dependencies manually.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Installation

Flashing a Pre-compiled Binary

Updates to the CAN translator firmware may be distributed as
pre-compiled binaries, e.g. if they are distributed by an OEM who does
not wish to make the CAN signals public. A binary firmware may be distributed
either as a .hex or .bin file.

For the moment, all of the pre-compiled firmare are built to run with a
bootloader on the microcontroller.

Quick Start

Windows

	Install Cygwin [http://www.cygwin.com] and in the installer, select the
following packages:

git, curl, libsasl2, ca-certificates

	Start a Cygwin Terminal.

	Configure the terminal to ignore Windows-style line endings in scripts:

$ echo "set -o igncr && export SHELLOPTS" >> ~/.bashrc && source ~/.bashrc

	Continue to the all platforms section.

OS X

If you already have Git installed, you can skip ahead to the all platforms section

	Open the Terminal app.

	Install Homebrew [http://mxcl.github.com/homebrew/]:
ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

	Install Git with Homebrew (brew install git).

	Continue to the all platforms section.

Linux

	Install Git from your distribution’s package manager.

Ubuntu:

$ sudo apt-get install git

Arch Linux:

$ [sudo] pacman -S git

	Continue to the all platforms section.

All Platforms

	If your network uses an Internet proxy (e.g. a corporate network) set the
http_proxy and https_proxy environment variables:

$ export http_proxy=<your proxy>
$ export https_proxy=<your proxy>

	Clone the cantranslator [https://github.com/openxc/cantranslator]
repository:

$ git clone https://github.com/openxc/cantranslator

	Continue on to platform specific documentation.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Installation

Building from Source

Before you can compile, you will need to define your CAN messages.

The build process uses GNU Make and works with Linux (tested in Arch Linux and
Ubuntu), OS X and Cygwin in Windows. For documentation on how to build for each
platform, see the supported platform details.

Makefile Options

These options are passed as shell environment variables to the Makefile, e.g.

$ DEBUG=1 make

	DEBUG - Set to 1 to compile with debugging symbols and to enable debug

	logging over UART.

	PLATFORM - Select the target microcontroller platform

	(see the platform specific pages for valid options).

UART - By default, UART output of OpenXC vehicle data is disabled. Set this
to 1 to enable UART output.

ETHERNET - By default, TCP output of OpenXC vehicle data is disabled. Set
this to 1 to enable TCP output on boards that have an Ethernet interface (only
the chipKIT Max32 right now).

BOOTLOADER - By default, the firmware is built to run on a microcontroller
with a bootloader, allowing you to update the firmware
without specialized hardware. If you want to build to run on bare-metal hardware
(i.e. start at the top of flash memory) set this to 0.

Note

When running make to compile, try adding the -j4 flag to build jobs
in parallel - the speedup can be quite dramatic.

Troubleshooting

If the compilation didn’t work:

	Make sure the submodules are up to date - run
git submodule update --init and then git status and make sure
there are no modified files in the working directory.

	Did you download the .zip file of the cantranslator project from
GitHub? Use git to clone the repository instead - the library dependencies
are stored as git submodules and do not work when using the zip file.

	If you get a lot of errors about undefined refernece to getSignals()' and
other functions, you need to make sure you defined your CAN messages - read
through CAN Message Definition before trying to compile.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Installation

Testing

Windows USB Device Driver

On Windows, a driver is required to use the CAN translator’s USB interface. A
driver is available in the conf/windows-driver [https://github.com/openxc/cantranslator/tree/master/conf/windows-driver]
folder. The driver supports both 32- and 64-bit Windows. The driver is generated
using the libusb-win32 [http://sourceforge.net/apps/trac/libusb-win32/wiki]
project.

Python Library

The OpenXC Python library [https://github.com/openxc/openxc-python], in particular the openxc-dashboard tool, is
useful for testing the CAN translator with a regular computer, to verify the
data received from a vehicle before introducing an Android device. Documentation
for this tool (and the list of required dependencies) is available on the OpenXC
vehicle interface testing [http://openxcplatform.com/vehicle-interface/testing.html] page.

Emulator

The repository includes a rudimentary CAN bus emulator:

$ make clean
$ make emulator

The emulator generates fakes values for many OpenXC signals and sends
them over USB as if it were plugged into a live CAN bus.

Test Suite

The non-embedded platform specific code in this repository includes a unit test
suite. It’s a good idea to run the test suite before committing any changes to
the git repository.

Dependencies

The test suite uses the check [http://check.sourceforge.net] library.

Ubuntu

$ sudo apt-get install check

OS X

Install Homebrew [http://mxcl.github.com/homebrew/], then check:

$ brew install check

Arch Linux

$ sudo pacman -S check

Running the Suite

cantranslator/src $ make clean && make test -s

Debugging information

Viewing Debugging data

To view debugging information, first compile the firmware with the
debugging flag:

$ make clean
$ DEBUG=1 make
$ make flash

When compiled with DEBUG=1, two things happen:

	Debug symbols are available in the .elf file generated in the build
directory.

	Log messages will be output over a UART port (no hardware flow control is
required) - see supported platforms for details.

View this output using an FTDI cable and any of the many available serial
terminal monitoring programs, e.g. screen, minicom, etc.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Installation

Bootloaders

For those who don’t have special microcontroller programming hardware, we strive
to make the vehicle interface firmware compatible with USB bootloaders. This
allows reflashing the firmware by copying a file over to a simulated USB drive,
or by using the popular avrdude tool.

For bootloader details, see the supported boards.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Installation

Dependencies

In order to build the CAN translator firmware from source, you need a few
dependencies:

	Git

	cantranslator source code cloned with Git - not from a .zip file

	MPIDE

	Digilent’s USB and CAN libraries for the chipKIT

	FTDI driver

	Mini-USB cable

If instead of the chipKIT, you are compiling for the Blueboard (based on the
NXP LPC1768/69), instead of MPIDE you will need:

	GCC for ARM toolchain

	OpenOCD

	JTAG programmer compatible with openocd - we’ve tested the Olimex
ARM-OCD-USB programmer.

The easiest way to install these dependencies is to use the
script/bootstrap.sh [https://github.com/openxc/cantranslator/blob/master/script/bootstrap.sh]
script in the cantranslator repository. Run the script in Linux, Cygwin in
Windows or OS X and if there are no errors you should be ready to go:

$ script/bootstrap.sh

If there are errors, continue reading in this section to install whatever piece
failed manually.

Source Code

Clone the repository from GitHub:

$ git clone https://github.com/openxc/cantranslator

Some of the library dependencies are included in this repository as git
submodules, so before you go further run:

$ git submodule update --init

If this doesn’t print out anything or gives you an error, make sure you cloned
this repository from GitHub with git and that you didn’t download a zip file.
The zip file is missing all of the git metadata, so submodules will not work.

MPIDE

Building the source for the CAN translator for the chipKIT microcontroller
requires MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] (the
development environment and compiler toolchain for chipKIT provided by
Digilent). Installing MPIDE can be a bit quirky on some platforms, so if you’re
having trouble take a look at the installation guide for MPIDE [http://chipkit.org/wiki/index.php?title=MPIDE_Installation].

Although we just installed MPIDE, building via the GUI is not supported. We
use GNU Make to compile and upload code to the device. You still need to
download and install MPIDE, as it contains the PIC32 compiler.

You need to set an environment variable (e.g. in $HOME/.bashrc) to
let the project know where you installed MPIDE (make sure to change
these defaults if your system is different!):

Path to the extracted MPIDE folder (this is correct for OS X)
export MPIDE_DIR=/Applications/Mpide.app/Contents/Resources/Java

Remember that if you use export, the environment variables are only
set in the terminal that you run the commands. If you want them active
in all terminals (and you probably do), you need to add these
export ... lines to the file ~/.bashrc (in Linux) or
~/.bash_profile (in OS X) and start a new terminal.

Digilent / Microchip Libraries

It also requires some libraries from Microchip that we are unfortunately unable
to include or link to as a submodule from the source because of licensing
issues:

	Microchip USB device library (download DSD-0000318 from the bottom of
the Network Shield
page [http://digilentinc.com/Products/Detail.cfm?NavPath=2,719,943&Prod=CHIPKIT-NETWORK-SHIELD])

	Microchip CAN library (included in the same DSD-0000318 package as
the USB device library)

You can read and accept Microchip’s license and download both libraries on the
Digilent download page [http://digilentinc.com/Agreement.cfm?DocID=DSD-0000318].

Once you’ve downloaded the .zip file, extract it into the libs
directory in this project. It should look like this:

- /Users/me/projects/cantranslator/
---- libs/
-------- chipKITUSBDevice/
 chipKitCAN/
 ... other libraries

FTDI Driver

If you’re using Mac OS X or Windows, make sure to install the FTDI driver that
comes with the MPIDE download. The chipKIT uses a different FTDI chip than the
Arduino, so even if you’ve used the Arduino before, you still need to install
this driver.

OpenOCD

Arch Linux

$ pacman -S openocd

OS X

Install Homebrew [http://mxcl.github.com/homebrew/]. Then:

$ brew install libftdi libusb
$ brew install --enable-ft2232_libftdi openocd

Remove the Olimex sections from the FTDI kernel module, and then reload it:

$ sudo sed -i "" -e "/Olimex OpenOCD JTAG A/{N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;d;}" /System/Library/Extensions/FTDIUSBSerialDriver.kext/Contents/Info.plist
$ sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext/
$ sudo kextload /System/Library/Extensions/FTDIUSBSerialDriver.kext/

GCC for ARM Toolchain

Download the binary version of the toolchain for your platform (Linux, OS X or
Windows) from this Launchpad site [https://launchpad.net/gcc-arm-embedded].

Arch Linux

In Arch Linux you can alternatively install the gcc-arm-none-eabi package
from the AUR.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

Supported Platforms

The firmware supports compiling for the Microchip’s PIC32 microcontroller and
NXP’s LPC1768/69 (and possibly other ARM Cortex M3 micros).

The code base is expanding very organically from supporting only one board to
supporting multiple architectures and board variants. The strategy we have now:

	Switch between “platforms” with the PLATFORM flag - a platform encapsulates a
micro architecture and a board variant.

	Implement different architecture-specific code in a subfolder for the micro

	Switch pins for board variants in in those same architecture-specific files
(like in lights.cpp)

PIC32

Two PIC32 boards are supported:

	Digilent chipKIT Max32

	FleetCarma Data Logger

LPC176x

	NGX Blueboard LPC1768-H

	Ford Prototype Vehicle Interface

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Supported Platforms

NGX Blueboard LPC1768-H

To build for the Blueboard, compile with the flag PLATFORM=BLUEBOARD.

UART

Identical to the Ford prototype.

Debug Logging

On the Blueboard LPC1768H, logging will be on UART0 (Pin P0.3 - Rx, Pin P0.2 -
Tx) at 115200 baud.

LED Lights

Currently LEDs are not supported on the Blueboard

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Supported Platforms

Ford Prototype Vehicle Interface

To build for the Ford prototype, compile with the flag PLATFORM=FORDBOARD.

Flashing a Pre-compiled Firmware

Pre-compiled binaries (built with the BOOTLOADER flag enabled, see all
compiler flags) are compatible with the OpenLPC USB bootloader [https://github.com/openxc/openlpc-USB_Bootloader] - follow the instructions
for Flashing User Code [https://github.com/openxc/openlpc-USB_Bootloader#flashing-user-code] to
update the vehicle interface.

Bootloader

The OpenLPC USB bootloader [https://github.com/openxc/openlpc-USB_Bootloader]
is tested and working, and enables the LPC17xx to appear as a USB drive. See the
documentation in that repository for instructions on how to flash the bootloader
(a JTAG programmer is required).

Compiling

USB Bootloader

If you are running a supported bootloader, you don’t need
any special programming hardware. Compile the firmware to run under the
bootloader:

$ make clean
$ PLATFORM=BLUEBOARD BOOTLOADER=1 make -j4

The compiled firmware will be located at
build/lpc17xx/cantranslator-lpc17xx.bin. See the :doc:`bootloaders
</installation/bootloaders>`_ page for instructions on how to load the firmware.

Bare Metal

Once the dependencies are installed, attach a
JTAG adapter to your computer and the CAN translator, then compile and flash:

$ make clean
$ PLATFORM=BLUEBOARD make -j4
$ PLATFORM=BLUEBOARD make flash

The config files in this repository assume your JTAG adapter is the
Olimex ARM-USB-OCD unit. If you have a different unit, modify the
src/lpc17xx/lpc17xx.mk Makefile to load your programmer’s OpenOCD
configuration.

UART

On the LPC17xx, UART1 is used for OpenXC output at the 230000 baud rate.
Like on the chipKIT, hardware flow control (RTS/CTS) is enabled, so CTS must be
pulled low by the receiving device before data will be sent.

	Pin 2.0 - UART1 TX, connect this to the RX line of the receiver.

	Pin 2.1 - UART1 RX, connect this to the TX line of the receiver.

	Pin 2.2 - UART1 CTS, connect this to the RTS line of the receiver.

	Pin 2.7 - UART1 RTS, connect this to the CTS line of the receiver.

Debug Logging

Logging will be on UART0, which is exposed on the bottom of the board at J3, a
5-pin ISP connector.

LED Lights

The Ford prototype has 2 RGB LEDs.

LED A

	CAN activity detected - Blue

	No CAN activity on either bus - Off

LED B

	USB connected, Bluetooth not connected - Green

	Bluetooth connected, USB in either state - Blue

	Neither USB or Bluetooth connected - Off

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

 	Supported Platforms

Digilent chipKIT Max32

To build for the chipKIT Max32, compile with the flag PLATFORM=CHIPKIT. The
chipKIT is also the default platform, so the flag is optional.

Flashing a Pre-compiled Firmware

These instructions assume your chipKIT is running the stock firmware, the
avrdude bootloader.

USB Cable

You need to have the mini-USB port on the chipKIT connected to your computer
to upload a new firmware. This is different than the micro-USB port that you use
to read vehicle data - see the device connections [http://openxcplatform.com/vehicle-interface/index.html#connections] section
of the OpenXC website [http://openxcplatform.com] to make sure you have the correct cable attached.

Uploading Script

Open a terminal run the upload_hex.sh script from the cantranslator
directory, passing it the path to the .hex file you downloaded:

$ cd cantranslator
$ script/upload_hex.sh <firmware file you downloaded>.hex

The upload_hex.sh script attempts to install all required dependencies
automatically, and it is tested in Cygwin, OS X Mountain Lion, Ubuntu 12.04 and
Arch Linux - other operating systems may need to install the dependencies
manually.

If you have more than one virtual serial (COM) port active, you may need to
explicitly specify which port to use. Pass the port name as the second argument
to the script, e.g. in Linux:

$ script/upload_hex.sh <firmware file you downloaded>.hex /dev/ttyUSB2

and in Windows, e.g. if you needed to use com4 instead of the default
com3:

$ script/upload_hex.sh <firmware file you downloaded>.hex com4

Windows notes

In Windows, this command will only work in Cygwin, not the standard
cmd.exe or Powershell.

If you get errors about $'\r': command not found then your Git configuration
added Windows-style CRLF line endings. Run this first to ignore the CR:

$ set -o igncr && export SHELLOPTS

Dependencies

If the flashing script failed, you may need to install the dependencies
manually.

FTDI Driver

If you are using Windows or OS X, you need to install the FTDI
driver. If you didn’t need to install MPIDE, you can download the driver
separately from FTDI [http://www.ftdichip.com/Drivers/VCP.htm].

AVR Programmer

In order to program the CAN translator, you need to install an AVR programmer.
There are a number of free options that will work.

With MPIDE

If you have MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] installed, that already includes a version of avrdude. You
need to set the MPIDE_DIR environment variable in your terminal to point to
the folder where you installed MPIDE. Once set, you should be able to use
upload_hex.sh [https://github.com/openxc/cantranslator/blob/master/script/upload_hex.sh].

Without MPIDE

If you do not already have MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] installed (and that’s fine, you don’t really
need it), you can install a programmer seprately:

	Linux - Look for avrdude in your distribution’s package manager.

	OS X - Install avrdude with Homebrew [http://mxcl.github.com/homebrew/].

	
	Windows

	
	Install Cygwin [http://www.cygwin.com] and MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads], and follow the
Installation documentation to configure the MPIDE environment
variables.

Bootloader

The PIC32 avrdude bootloader [https://github.com/openxc/PIC32-avrdude-bootloader] is tested and working and
allows flashing over USB with avrdude. All stock chipKITs are programmed
with a compatible bootloader at the factory.

Compiling

Once the dependencies are installed, attach the chipKIT to
your computer with a mini-USB cable, cd into the src subdirectory, build
and upload to the device.

$ make clean
$ make
$ make flash

If the flash command can’t find your chipKIT, you may need to set the
SERIAL_PORT variable if the serial emulator doesn’t show up as
/dev/ttyUSB* in Linux, /dev/tty.usbserial* in Mac OS X or com3 in
Windows. For example, if the chipKIT shows up as /dev/ttyUSB4:

$ SERIAL_PORT=/dev/ttyUSB4 make flash

and if in Windows it appeared as COM4:

$ SERIAL_PORT=com4 make flash

This build process assumes your chipKIT is running the
avrdude bootloader - all chipKITs come
programmed with a compatible bootloader by default.

IDE Support

It is possible to use an IDE like Eclipse to edit and compile the
project.

	Follow the directions in the above “Installation” section.

	Install Eclipse with the CDT project [http://www.eclipse.org/cdt/]

	In Eclipse, go to
File -> Import -> C/C++ -> Existing Code as Makefile Project and
then select the cantranslator/src folder.

	In the project’s properties, under
C/C++ General -> Paths and Symbols, add these to the include
paths for C and C++:
	${MPIDE_DIR}/hardware/pic32/compiler/pic32-tools/pic32mx/include

	${MPIDE_DIR}/hardware/pic32/cores/pic32

	/src/libs/CDL/LPC17xxLib/inc (add as a “workspace
path”)

	/src/libs/chipKITCAN (add as a “workspace path”)

	/src/libs/chipKITUSBDevice (add as a “workspace
path”)

	/src/libs/chipKITUSBDevice/utility (add as a
“workspace path”)

	/src/libs/chipKITEthernet (add as a “workspace
path”)

	/usr/include (only if you want to use the test suite, which
requires the check C library)

	In the same section under Symbols, if you are building for the
chipKIT define a symbol with the name __PIC32__

	In the project folder listing, select
Resource Configurations -> Exclude from Build for these
folders:
	src/libs

	build

If you didn’t set up the environment variables from the Installation
section (e.g. MPIDE_HOME), you can also do that from within Eclipse
in C/C++ project settings.

There will still be some errors in the Eclipse problem detection, e.g.
it doesn’t seem to pick up on the GCC __builtin_* functions, and
some of the chipKIT libraries are finicky. This won’t have an effect on
the actual build process, just the error reporting.

USB

The micro-USB port on the Digilent Network Shield is used to send and receive
OpenXC messages. The mini-USB cable on the Max32 itself is only used for
re-programming.

UART

On the chipKIT, UART1A is used for OpenXC output at the 460800 baud rate.
Hardware flow control (RTS/CTS) is enabled, so CTS must be pulled low by the
receiving device before data will be sent.

UART1A is also used by the USB-Serial connection, so in order to flash the
PIC32, the Tx/Rx lines must be disconnected. Ideally we could leave that UART
interface for debugging, but there are conflicts with all other exposed UART
interfaces when using flow control.

	Pin 0 - U1ARX, connect this to the TX line of the receiver.

	Pin 1 - U1ATX, connect this to the RX line of the receiver.

	Pin 18 - U1ARTS, connect this to the CTS line of the receiver.

	Pin 19 - U1ACTS, connect this to the RTS line of the receiver.

An additional item to consider when using UART: typically you will want to rig
the chipKIT to be self-powered (either from an external power source or the
vehicle) if you’re going to use UART for adding Bluetooth support. There’s not
much point in being wireless if you still need power from USB.

In that case, move the USB power jumper from the 5v input on the Network Shield
to A0 (analog input 0). Instead of using 5v to power the board, the firmware can
use it to detect if USB is actually attached or not. The benefit of this is that
if you connect USB, then disconnect it, we can detect that in the firmware and
stop wasting time trying to send data over USB. This will dramatically increase
the throughput over UART.

Debug Logging

On the chipKIT Max32, logging will be on UART2 (Pin 16 - Tx, Pin 17 - Rx) at
115200 baud.

LED Lights

The chipKIT has 1 user controllable LED. When CAN activity is detected, the LED
will be enabled (it’s green).

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

CAN Message Definition

Once the libraries are installed and you run make, you’ll notice
that it won’t compile - you’ll get a bunch of errors that look like
this:

build-cli/canutil_chipkit.o: In function `initializeCan(CanBus*)':
canutil_chipkit.cpp:(.text._Z13initializeCanP6CanBus+0xb8): undefined reference to `initializeFilterMasks(unsigned long long, int*)'
canutil_chipkit.cpp:(.text._Z13initializeCanP6CanBus+0xcc): undefined reference to `initializeFilters(unsigned long long, int*)'
build-cli/cantranslator.o: In function `receiveWriteRequest(char*)':
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x40): undefined reference to `getSignals()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x48): undefined reference to `getSignalCount()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x7c): undefined reference to `getCommands()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x84): undefined reference to `getCommandCount()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0xa4): undefined reference to `getSignals()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0xac): undefined reference to `getSignalCount()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x118): undefined reference to `getSignals()'
cantranslator.cpp:(.text._Z19receiveWriteRequestPc+0x120): undefined reference to `getSignalCount()'
build-cli/cantranslator.o: In function `initializeAllCan()':
cantranslator.cpp:(.text._Z16initializeAllCanv+0x1c): undefined reference to `getCanBuses()'
cantranslator.cpp:(.text._Z16initializeAllCanv+0x30): undefined reference to `getCanBusCount()'
build-cli/cantranslator.o: In function `_ZL17customUSBCallback9USB_EVENTPvj.clone.0':
cantranslator.cpp:(.text._ZL17customUSBCallback9USB_EVENTPvj.clone.0+0x70): undefined reference to `getMessageSet()'
cantranslator.cpp:(.text._ZL17customUSBCallback9USB_EVENTPvj.clone.0+0x98): undefined reference to `getMessageSet()'
build-cli/cantranslator.o: In function `receiveCan(CanBus*)':
cantranslator.cpp:(.text._Z10receiveCanP6CanBus+0x40): undefined reference to `decodeCanMessage(int, unsigned char*)'
build-cli/cantranslator.o: In function `loop':
cantranslator.cpp:(.text.loop+0x1c): undefined reference to `getCanBuses()'
cantranslator.cpp:(.text.loop+0x30): undefined reference to `getCanBusCount()'
collect2: ld returned 1 exit status
make[1]: *** [build-cli/cantranslator.elf] Error 1
make[1]: Leaving directory `/home/cantranslator/cantranslator'
make: *** [all] Error 2

The open source repository does not include the implementation of the functions
declared in signals.h and these are required to compile and program a CAN
transaltor. These functions are dependent on the specific vehicle and message
set, which is often proprietary information to the automaker.

You have three options to get a working CAN translator:

	Implement the functions manually if you know the CAN message formats

	Create a CAN message mapping and use the scripts to
auto-generate signals.cpp. Knowledge of the vehicle’s CAN message is also
required for this method.

	Use a pre-built binary firmware from an automaker.

Manual

You must implement the functions defined in the signals.h header
file. The documentation of those functions describes the expected effect
of each. Implement these in a file called signals.cpp and the code
should now compile.

You must know the CAN message formats of the vehicle you want to use
with the CAN translator, as you cannot implement these functions without
that knowledge.

Auto-generated from Mapping

The code auto-generation script accepts a special JSON input file that defines the CAN messages and signals of interest and rewrites
it as C data structures, ready to be downloaded to the device. You must know the
CAN message formats of the vehicle you want to use with the CAN translator, as
you cannot create these input files without that knowledge.

Once you have one or more input JSON files, run the generate_source.py
script to create a complete implementation of signals.cpp for your messages.
For example, if your mappings are in signals.json:

$ script/generate_code.py --json signals.json > signals.cpp

If you used the xml_to_json.py script to convert an XML CAN database to
JSON, make sure to provide both the converted file along with your mappings:

$ script/generate_code.py --json signals.json --json mappings.json > signals.cpp

Drop the new signals.cpp file in the src folder, and it should now
compile. Don’t add anything else to this file -
it’s derivative of the master JSON, and should be able to be wiped and recreated
at any time.

If you have multiple CAN buses and want to define their signals and
messages in separate files, just pass multiple JSON files:

$ script/generate_code.py --json highspeed.json --json mediumspeed.json > signals.cpp

Note that the JSON files are parsed and merged, so if you want to define
custom handlers and states separately from the signal definition itself,
you can store them in separate files and they will be merged on import.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

JSON Mapping Format

The code generation script (to generate signals.cpp) requires a JSON file of
a specific format as input. The input format is a JSON object like the one found
in sample.json [https://github.com/openxc/cantranslator/blob/master/src/signals.json.example].

JSON Format

The root level JSON object maps CAN bus addresses to CAN bus objects, CAN
message IDs to CAN message objects in each bus, and CAN signal name to signal
object within each message.

CAN Bus

The object key for a CAN bus is a hex address that identifies which CAN
controller on the microcontroller is attached to the bus. The platforms we are
using now only have 2 CAN controllers, but by convention they are identified
with 0x101 and 0x102 - these are the only acceptable bus addresses.

speed - The CAN bus speed in Kbps.

messages - A mapping of CAN message objects that are on this bus,
the key being the message ID in hex as a string (e.g. 0x90).

commands - A mapping of CAN command objects that should be sent on
this bus that should be sent on this bus. The key is the name that will
be used over the OpenXC interface.

Command

The attributes of a command object are:

handler - The name of a custom command handler function that should
be called with the data when the named command arrives over
USB/Bluetooth/etc.

Message

The attributes of a message object are:

name - The name of the CAN message. Optional - just used to be able
to reference the original documentation from the mappings file.

handler - The name of a function that will be compiled with the
sketch and should be applied to the entire raw message value. No other
operations are performed on the data if this type of handler is used.
Optional - see the “Custom Handlers” section for more.

signals - A list of CAN signal objects that are in this message,
with the official name of the signal as the key. If merging with
automatically generated JSON from another database, this value must
match exactly - otherwise, it’s an arbitrary name.

Signal

The attributes of a signal object within a message are:

generic_name - The name of the associated generic signal name (from
the OpenXC specification) that this should be translated to. Optional -
if not specified, the signal is read and stored in memory, but not sent
to the output bus. This is handy for combining the value of multiple
signals into a composite measurement such as steering wheel angle with
its sign.

bit_position - The staring bit position of this signal within the
message.

bit_size - The width in bits of the signal.

factor - The signal value is multiplied by this if set. Optional.

offset - This is added to the signal value if set. Optional.

value_handler - The return type and name of a function that will be
compiled with the sketch and should be applied to the signal’s value
after the normal translation. Optional - see the “Custom Handlers”
section for more.

ignore - Setting this to true on a signal will silence output of
that signal. The translator will not monitor the signal nor store any of
its values. This is useful if you are using a custom handler for an
entire message, want to silence the normal output of the signals it
handles, and you don’t need the translator to keep track of the values
of any of the signals separately. If you need to use the previously
stored values of any of the signals, you can use the ignoreHandler
as a value handler for the signal.

states - For state values, this is a mapping between the desired
descriptive enum states (e.g. off) and a list of the corresponding
raw state values from the CAN bus (usually an integer). The raw values
are specified as a list to accommodate multiple raw states being
coalesced into a single final state (e.g. key off and key removed both
mapping to just “off”).

send_frequency - Some CAN signals are sent at a very high frequency,
likely more often than will ever be useful to an application. This
attribute defaults to 1 meaning that 1/1 (i.e. 100%) of the
values for this signal will be processed and sent over USB. Increasing
the value will reduce the number of messages that are sent - a value of
10 means that only 1/10 messages (i.e. every 10th message) is
processed. You don’t want to combine this attribute with send_same
or else you risk missing a status change message if wasn’t one of the
messages the translator decided to let through.

send_same - By default, all signals are process and sent over USB
every time they are received on the CAN bus. By setting this to
false, you can force a signal to be sent only if the value has
actually changed. This works best with boolean and state based signals.

writable - The only signals read through the OUT channel of the
USB device (i.e. from the host device back to the CAN translator) that
are actually encoded and written back to the CAN bus are those marked
with this flag true. By default, the value will be interpreted as a
floating point number.

write_handler - If the signal is writable and is not a plain
floating point number (i.e. it is a boolean or state value), you can
specify a custom function here to encode the value for a CAN messages.
This is only necessary for boolean types at the moment - if your signal
has states defined, we assume you need to encode a string state value
back to its original numerical value.

Device to Vehicle Commands

Optionally, you can specify completely custom handler functions to
process incoming OpenXC messages from the USB host. In the commands
section of the JSON object, you can specify the generic name of the
OpenXC command and an associated function that matches the
CommandHandler function prototype (from canutil.h):

bool (*CommandHandler)(const char* name, cJSON* value, cJSON* event,
 CanSignal* signals, int signalCount);

Any message received from the USB host with that name will be passed to
your handler - this is useful for situations where there isn’t a 1 to 1
mapping between OpenXC command and CAN signal, e.g. if the left and
right turn signal are split into two signals instead of the 1
state-based signal used by OpenXC. You can use the sendCanSignal
function in canwrite.h to do the actual data sending on the CAN bus.

Value & Message Handlers

There are two levels of custom handlers:

	Message handlers - use these for custom processing of the entire CAN
message.

	Value handlers - use these for making non-standard transformations to
a signal value

Value Handlers

The default value handler for each signal is a simple passthrough, translating
the signal’s ID to an abstracted name (e.g. SteeringWheelAngle) and its
value from engineering units to something more usable. Some signals require
additional processing that you may wish to do within the translator and not on
the host device. Other signals may need to be combined to make a composite
signal that’s more meaningful to developers.

An good example is steering wheel angle. For an app developer to get a
value that ranges from e.g. -350 to +350, we need to combine two
different signals - the angle and the sign. If you want to make this
combination happen inside the translator, you can use a custom handler.

You may also need a custom handler to return a value of a type other
than float. A handler is provided for dealing with boolean values, the
booleanHandler - if you specify that as your signal’s
value_handler the resulting JSON will contain true for 1.0 and
false for 0.0. If you want to translate integer state values to
string names (for parsing as an enum, for example) you will need to
write a value handler that returns a char*.

For this example, we want to modify the value of SteeringWheelAngle
by setting the sign positive or negative based on the value of the other
signal (StrAnglSign). Every time a CAN signal is received, the new
value is stored in memory. Our custom handler
handleSteeringWheelAngle will use that to adjust the raw steering
wheel angle value. Modify the input JSON file to set the
value_handler attribute for the steering wheel angle signal to
handleSteeringWheelAngle. If you’re using generate_code.py, the
handlers should be saved in src/handlers.h and src/handlers.cpp:

src/handlers.h:

float handleSteeringWheelAngle(CanSignal* signal, CanSignal* signals,
 int signalCount, float value, bool* send);

src/handlers.cpp:

float handleSteeringWheelAngle(CanSignal* signal, CanSignal* signals,
 int signalCount, float value, bool* send) {
 if(signal->lastValue == 0) {
 // left turn
 value *= -1;
 }
 return value;
}

The valid return types for value handlers are bool, float and
char* - the function prototype must match one of:

char* customHandler(CanSignal* signal, CanSignal* signals, int signalCount,
 float value, bool* send);

float customHandler(CanSignal* signal, CanSignal* signals, int signalCount,
 float value, bool* send);

bool customhandler(cansignal* signal, cansignal* signals, int signalCount,
 float value, bool* send);

where signal is a pointer to the CanSignal this is handling,
signals is a an array of all signals, value is the raw value
from CAN and send is a flag to indicate if this should be sent over
USB.

The bool* send parameter is a pointer to a bool you can flip to
false if this signal value need not be sent over USB. This can be
useful if you don’t want to keep notifying the same status over and over
again, but only in the event of a change in value (you can use the
lastValue field on the CanSignal object to determine if this is
true). It’s also good practice to inspect the value of send when your custom
handler is called - the normal translation stack may have decided the data
shouldn’t be sent (e.g. the value hasn’t changed and sendSame == false).
Handlers are called every time a signal is received, even if send == false,
so that you have the flexibility to implement custom processing that depends on
receiving every data point.

A known issue with this method is that there is no guarantee that the
last value of another signal arrived in the message or before/after the
value you’re current modifying. For steering wheel angle, that’s
probably OK - for other signals, not so much.

Message Handlers

If you need greater precision, you can provide a custom handler for the
entire message to guarantee they arrived together. You can generate 0, 1
or many translated messages from one call to your handler function.

void handleSteeringWheelMessage(int messageId, uint64_t data,
 CanSignal* signals, int signalCount, Listener* listener);
 float steeringWheelAngle = decodeCanSignal(&signals[1], data);
 float steeringWheelSign = decodeCanSignal(&signals[2], data);

 float finalValue = steeringWheelAngle;
 if(steeringWheelSign == 0) {
 // left turn
 finalValue *= -1;
 }

 char* message = generateJson(signals[1], finalValue);
 sendMessage(usbDevice, (uint64_t*) message, strlen(message));
}

Using a custom message handler will not stop individual messages for
each signal from being output. To silence them but still store their
values in signal->lastvalue as they come in, specify the special
ignoreHandler as the value_handler for signals don’t want to
double send. The reason we don’t do this automatically is that not all
signals in a message are always handled by the same message handler.

Generating JSON from Vector CANoe Database

If you use Canoe to store your “gold standard” CAN signal definitions,
you may be able to use the included xml_to_json.py script to make
your JSON for you. First, export the Canoe .dbc file as XML - you can do
this with Vector CANdb++. Next, create a JSON file according to the format
defined above, but only define:

	CAN bus

	CAN messages

	Name of CAN signals within messages and their generic_name

	Any custom handlers or commands

Assuming the data exported from Vector is in signals.xml and your minimal
mapping file is mapping.json, run the script:

$./xml_to_json.py signals.xml mapping.json signals.json

The script scans mapping.json to identify the CAN messages and
signals that you want to use from the XML file. It pulls the neccessary details
of the messages (bit position, bit size, offset, etc) and outputs the resulting
subset as JSON into the output file, signals.json.

The resulting file together with mapping.json will work as input to the code
generation script.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

UART Output

You can optionally receive the output data over a serial connection in
addition to USB. The data format is the same as USB - a stream of newline
separated JSON objects.

In the same way that you can send OpenXC writes over USB using the OUT
direction of the USB endpoint, you can send identically formatted
messages in the opposite direction on the serial device - from the host
to the CAN translator. They’ll be processed in exactly the same way.
These write messages are accepted via serial even if USB is connected. One
important difference between reads and writes - write JSON messages must be
separated by a NULL character instead of a newline.

For details on your particular platform, see the supported platforms.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	OpenXC CAN Translator 3.2.1 documentation

USB Device Driver

Most users do not need to know the details of the device driver, but for
reference it is documented here.

The CAN translator initializes its USB 2.0 controller as a USB device with three
endpoints. The Android tablet or computer you connect to the translator acts as
the USB host, and must initiate all transfers.

Endpoint 0

This is the standard USB control transfer endpoint. The CAN transalator
has a few control commands:

Version

Version control command: 0x80

The host can retrieve the version of the CAN translator using the
0x80 control request. The data returned is a string containing the
software version of the firmware and the configured vehicle platform in
the format:

Version: 1.0 (c346)

where 1.0 is the software version and c346 is the configured
vehicle.

Reset

Reset control command: 0x81

The CAN transceivers can be re-initialized by sending the 0x81
control request. This command was introduced to work around a bug that
caused the CAN translator to periodically stop responding. The bug still
exists, but there are now workarounds in the code to automatically
re-initialize the transceivers if they stop receiving messages.

Endpoint 1 IN

Endpoint 1 is configured as a bulk transfer endpoint with the IN
direction (device to host). OpenXC JSON messages read from the vehicle
are sent to the host via IN transactions. When the host is ready to
receive, it should issue a request to read data from this endpoint. A
larger sized request will allow more messages to be batched together
into one USB request and give high overall throughput (with the downside
of introducing delay depending on the size of the request).

Endpoint 2 OUT

OpenXC JSON messages created by the host to send to the vehicle (i.e. to
write to the CAN bus) are sent via OUT transactions. The CAN
translator is prepared to accept writes from the host as soon as it
initializes USB, so they can be sent at any time. The messages must be separated
by a NULL character.

There is no special demarcation on these messages to indicate they are writes -
the fact that they are written in the OUT direction is sufficient. Write
messages must be no more than 4 USB packets in size, i.e. 4 * 64 = 256 bytes.

In the same way the CAN translator is pre-configured with a list of CAN
signals to read and parse from the CAN bus, it is configured with a
whitelist of messages and signals for which to accept writes from the
host. If a message is sent with an unlisted ID it is silently ignored.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	OpenXC CAN Translator 3.2.1 documentation

Index

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 _static/minus.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/logo.png
OpenXX

_images/logo.png
OpenXX

_static/plus.png

search.html

 Navigation

 		
 index

 		OpenXC CAN Translator 3.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-bright.png

_static/comment.png

_static/up.png

