

 Navigation

 	
 index

 	
 next |

 	OpenXC CAN Translator 4.1 documentation

OpenXC CAN Translator

[image: _images/logo.png]

	Version:	4.1

	Web:	http://openxcplatform.com

	Documentation:	http://vi-firmware.openxcplatform.com

	Source:	http://github.com/openxc/cantranslator

About

The CAN translation module code runs on an Arduino-compatible microcontroller
connected to one or more CAN buses. It receives either all CAN messages or a
filtered subset, performs any unit conversion or factoring required and outputs
a generic version to a USB interface.

The firmware supports multiple microcontrollers.

Setup

	Installation
	Flashing a Pre-compiled Binary

	Building from Source

	Testing

	Bootloaders

	Dependencies

	Quick Start

	Supported Platforms
	PIC32

	LPC176x

Pre-built Binary

If you’ve downloaded a pre-built binary for a specific vehicle, see the
Flashing a Pre-compiled Binary section for instructions on how to flash your CAN
translator. Most users do not need to set up the full development described in
these docs.

A Windows driver for the USB interface is available in the conf/windows-driver [https://github.com/openxc/cantranslator/tree/master/conf/windows-driver]
folder. The driver supports both 32- and 64-bit Windows. The driver is generated
using the libusb-win32 [http://sourceforge.net/apps/trac/libusb-win32/wiki]
project.

CAN Message Definition

	CAN Message Definition

Output Interfaces & Format

The OpenXC message format is specified and versioned separately from any of the
individual OpenXC interfaces or libraries, in the OpenXC Message Format [https://github.com/openxc/openxc-message-format] repository.

	UART Output

	USB Device Driver

Contributing

Please see our Contributing Guide [https://github.com/openxc/cantranslator/blob/master/CONTRIBUTING.mkd].

Mailing list

For discussions about the usage, development, and future of OpenXC, please join
the OpenXC mailing list [http://groups.google.com/group/openxc].

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/openxc/cantranslator/issues/

Related Projects

Python Library

The OpenXC Python library [https://github.com/openxc/openxc-python], in particular the openxc-dashboard tool, is
useful for testing the CAN translator with a regular computer, to verify the
data received from a vehicle before introducing an Android device. Documentation
for this tool (and the list of required dependencies) is available on the OpenXC
vehicle interface testing [http://openxcplatform.com/vehicle-interface/testing.html] page.

Android Library

The OpenXC Android library [https://github.com/openxc/openxc-android] is the primary entry point for new OpenXC
developers. More information on this library is available at in the
applications [http://openxcplatform.com/android/index.html] section of the OpenXC website [http://openxcplatform.com].

License

Copyright (c) 2012-2013 Ford Motor Company

Licensed under the BSD license.

This software depends on other open source projects, and a binary distribution
may contain code covered by other licenses.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

Installation

If you’ve downloaded a pre-built binary for a specific vehicle, see the
Flashing a Pre-compiled Binary section for instructions on how to flash your CAN
translator. Most users do not need to set up the full development described in
these docs.

	Flashing a Pre-compiled Binary

	Building from Source

	Testing

	Bootloaders

	Dependencies

Quick Start

Linux

	Install Git from your distribution’s package manager.

Ubuntu:

$ sudo apt-get install git

Arch Linux:

$ [sudo] pacman -S git

	Continue to the all platforms section.

Windows

	Install Cygwin [http://www.cygwin.com] and in the installer, select the
following packages:

gcc4, patchutils, git, unzip, python, python-argparse, check, curl,
libsasl2, ca-certificates, python-setuptools

	Start a Cygwin Terminal.

	Configure the terminal to ignore Windows-style line endings in scripts:

$ set -o igncr && export SHELLOPTS

	Install the FTDI driver (the bootstrap script tries to take
care of this, but some developers are reporting that it doesn’t actaully get
installed)

	Continue to the all platforms section.

OS X

	Open the Terminal app.

	Install Homebrew [http://mxcl.github.com/homebrew/]:
ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

	Install Git with Homebrew (brew install git).

	Continue to the all platforms section.

All Platforms

	If your network uses an Internet proxy (e.g. a corporate network) set the
http_proxy and https_proxy environment variables:

$ export http_proxy=<your proxy>
$ export https_proxy=<your proxy>

	Clone the cantranslator [https://github.com/openxc/cantranslator]
repository:

$ git clone https://github.com/openxc/cantranslator

	Run the bootstrap.sh script:

$ cd cantranslator
$ script/bootstrap.sh

	If there were no errors, you are ready to compile. If
there are errors, follow the recommendations in the error messages. You may
need to manually install the dependencies if your environment is not in a
predictable state.

The bootstrap.sh script is tested in Cygwin, OS X Mountain Lion, Ubuntu
12.04 and Arch Linux - other operating systems may need to
install the dependencies manually.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Installation

Flashing a Pre-compiled Binary

Updates to the CAN translator firmware may be distributed as
pre-compiled binaries, e.g. if they are distributed by an OEM who does
not wish to make the CAN signals public. A binary firmware may be distributed
either as a .hex or .bin file.

For the moment, all of the pre-compiled firmare are built to run with a
bootloader on the microcontroller.

Quick Start

Windows

	Install Cygwin [http://www.cygwin.com] and in the installer, select the
following packages:

git, curl, libsasl2, ca-certificates, patchutils

	Start a Cygwin Terminal.

	Configure the terminal to ignore Windows-style line endings in scripts:

$ echo "set -o igncr && export SHELLOPTS" >> ~/.bashrc && source ~/.bashrc

	Continue to the all platforms section.

OS X

If you already have Git installed, you can skip ahead to the all platforms section

	Open the Terminal app.

	Install Homebrew [http://mxcl.github.com/homebrew/]:
ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

	Install Git with Homebrew (brew install git).

	Continue to the all platforms section.

Linux

	Install Git from your distribution’s package manager.

Ubuntu:

$ sudo apt-get install git

Arch Linux:

$ [sudo] pacman -S git

	Continue to the all platforms section.

All Platforms

	If your network uses an Internet proxy (e.g. a corporate network) set the
http_proxy and https_proxy environment variables:

$ export http_proxy=<your proxy>
$ export https_proxy=<your proxy>

	Clone the cantranslator [https://github.com/openxc/cantranslator]
repository:

$ git clone https://github.com/openxc/cantranslator

	Continue on to platform specific documentation.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Installation

Building from Source

Before you can compile, you will need to define your CAN messages.

The build process uses GNU Make and works with Linux (tested in Arch Linux and
Ubuntu), OS X and Cygwin in Windows. For documentation on how to build for each
platform, see the supported platform details.

Makefile Options

These options are passed as shell environment variables to the Makefile, e.g.

$ DEBUG=1 make

	DEBUG - Set to 1 to compile with debugging symbols and to enable

	debug logging. See the platform docs for
details on how to read this output.

	PLATFORM - Select the target microcontroller platform

	(see the platform specific pages for valid options).

NETWORK - By default, TCP output of OpenXC vehicle data is disabled. Set
this to 1 to enable TCP output on boards that have an Network interface (only
the chipKIT Max32 right now).

BOOTLOADER - By default, the firmware is built to run on a microcontroller
with a bootloader, allowing you to update the firmware
without specialized hardware. If you want to build to run on bare-metal hardware
(i.e. start at the top of flash memory) set this to 0.

Note

When running make to compile, try adding the -j4 flag to build jobs
in parallel - the speedup can be quite dramatic.

Troubleshooting

If the compilation didn’t work:

	Make sure the submodules are up to date - run
git submodule update --init and then git status and make sure
there are no modified files in the working directory.

	Did you download the .zip file of the cantranslator project from
GitHub? Use git to clone the repository instead - the library dependencies
are stored as git submodules and do not work when using the zip file.

	If you get a lot of errors about undefined reference to getSignals()' and
other functions, you need to make sure you defined your CAN messages - read
through CAN Message Definition before trying to compile.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Installation

Testing

Windows USB Device Driver

On Windows, a driver is required to use the CAN translator’s USB interface. A
driver is available in the conf/windows-driver [https://github.com/openxc/cantranslator/tree/master/conf/windows-driver]
folder. The driver supports both 32- and 64-bit Windows. The driver is generated
using the libusb-win32 [http://sourceforge.net/apps/trac/libusb-win32/wiki]
project.

Python Library

The OpenXC Python library [https://github.com/openxc/openxc-python], in particular the openxc-dashboard tool, is
useful for testing the CAN translator with a regular computer, to verify the
data received from a vehicle before introducing an Android device. Documentation
for this tool (and the list of required dependencies) is available on the OpenXC
vehicle interface testing [http://openxcplatform.com/vehicle-interface/testing.html] page.

Emulator

The repository includes a rudimentary CAN bus emulator:

$ make clean
$ make emulator

The emulator generates fakes values for many OpenXC signals and sends
them over USB as if it were plugged into a live CAN bus.

Test Suite

The non-embedded platform specific code in this repository includes a unit test
suite. It’s a good idea to run the test suite before committing any changes to
the git repository.

Dependencies

The test suite uses the check [http://check.sourceforge.net] library.

Ubuntu

$ sudo apt-get install check

OS X

Install Homebrew [http://mxcl.github.com/homebrew/], then check:

$ brew install check

Arch Linux

$ sudo pacman -S check

Running the Suite

cantranslator/src $ make clean && make test -s

Debugging information

Viewing Debugging data

To view debugging information, first compile the firmware with the
debugging flag:

$ make clean
$ DEBUG=1 make
$ make flash

When compiled with DEBUG=1, two things happen:

	Debug symbols are available in the .elf file generated in the build
directory.

	Log messages will be output over a UART port (no hardware flow control is
required) - see supported platforms for details.

View this output using an FTDI cable and any of the many available serial
terminal monitoring programs, e.g. screen, minicom, etc.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Installation

Bootloaders

For those who don’t have special microcontroller programming hardware, we strive
to make the vehicle interface firmware compatible with USB bootloaders. This
allows reflashing the firmware by copying a file over to a simulated USB drive,
or by using the popular avrdude tool.

For bootloader details, see the supported boards.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Installation

Dependencies

In order to build the CAN translator firmware from source, you need a few
dependencies:

	Git

	cantranslator source code cloned with Git - not from a .zip file

	OpenXC Python library [http://python.openxcplatform.com]

	MPIDE

	Digilent’s USB and CAN libraries for the chipKIT

	FTDI driver

	Mini-USB cable

If instead of the chipKIT, you are compiling for the Blueboard (based on the
NXP LPC1768/69), instead of MPIDE you will need:

	GCC for ARM toolchain

	OpenOCD

	JTAG programmer compatible with openocd - we’ve tested the Olimex
ARM-OCD-USB programmer.

The easiest way to install these dependencies is to use the
script/bootstrap.sh [https://github.com/openxc/cantranslator/blob/master/script/bootstrap.sh]
script in the cantranslator repository. Run the script in Linux, Cygwin in
Windows or OS X and if there are no errors you should be ready to go:

$ script/bootstrap.sh

If there are errors, continue reading in this section to install whatever piece
failed manually.

Source Code

Clone the repository from GitHub:

$ git clone https://github.com/openxc/cantranslator

Some of the library dependencies are included in this repository as git
submodules, so before you go further run:

$ git submodule update --init

If this doesn’t print out anything or gives you an error, make sure you cloned
this repository from GitHub with git and that you didn’t download a zip file.
The zip file is missing all of the git metadata, so submodules will not work.

MPIDE

Building the source for the CAN translator for the chipKIT microcontroller
requires MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] (the
development environment and compiler toolchain for chipKIT provided by
Digilent). Installing MPIDE can be a bit quirky on some platforms, so if you’re
having trouble take a look at the installation guide for MPIDE [http://chipkit.org/wiki/index.php?title=MPIDE_Installation].

Although we just installed MPIDE, building via the GUI is not supported. We
use GNU Make to compile and upload code to the device. You still need to
download and install MPIDE, as it contains the PIC32 compiler.

You need to set an environment variable (e.g. in $HOME/.bashrc) to
let the project know where you installed MPIDE (make sure to change
these defaults if your system is different!):

Path to the extracted MPIDE folder (this is correct for OS X)
export MPIDE_DIR=/Applications/Mpide.app/Contents/Resources/Java

Remember that if you use export, the environment variables are only
set in the terminal that you run the commands. If you want them active
in all terminals (and you probably do), you need to add these
export ... lines to the file ~/.bashrc (in Linux) or
~/.bash_profile (in OS X) and start a new terminal.

Digilent / Microchip Libraries

It also requires some libraries from Microchip that we are unfortunately unable
to include or link to as a submodule from the source because of licensing
issues:

	Microchip USB device library (download DSD-0000318 from the bottom of
the Network Shield
page [http://digilentinc.com/Products/Detail.cfm?NavPath=2,719,943&Prod=CHIPKIT-NETWORK-SHIELD])

	Microchip CAN library (included in the same DSD-0000318 package as
the USB device library)

You can read and accept Microchip’s license and download both libraries on the
Digilent download page [http://digilentinc.com/Agreement.cfm?DocID=DSD-0000318].

Once you’ve downloaded the .zip file, extract it into the libs
directory in this project. It should look like this:

- /Users/me/projects/cantranslator/
---- libs/
-------- chipKITUSBDevice/
 chipKitCAN/
 ... other libraries

FTDI Driver

If you’re using Mac OS X or Windows, make sure to install the FTDI driver that
comes with the MPIDE download. The chipKIT uses a different FTDI chip than the
Arduino, so even if you’ve used the Arduino before, you still need to install
this driver.

OpenOCD

Arch Linux

$ pacman -S openocd

OS X

Install Homebrew [http://mxcl.github.com/homebrew/]. Then:

$ brew install libftdi libusb
$ brew install --enable-ft2232_libftdi openocd

Remove the Olimex sections from the FTDI kernel module, and then reload it:

$ sudo sed -i "" -e "/Olimex OpenOCD JTAG A/{N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;d;}" /System/Library/Extensions/FTDIUSBSerialDriver.kext/Contents/Info.plist
$ sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext/
$ sudo kextload /System/Library/Extensions/FTDIUSBSerialDriver.kext/

GCC for ARM Toolchain

Download the binary version of the toolchain for your platform (Linux, OS X or
Windows) from this Launchpad site [https://launchpad.net/gcc-arm-embedded].

Arch Linux

In Arch Linux you can alternatively install the gcc-arm-none-eabi package
from the AUR.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

Supported Platforms

The firmware supports compiling for the Microchip’s PIC32 microcontroller and
NXP’s LPC1768/69 (and possibly other ARM Cortex M3 micros).

The code base is expanding very organically from supporting only one board to
supporting multiple architectures and board variants. The strategy we have now:

	Switch between “platforms” with the PLATFORM flag - a platform encapsulates a
micro architecture and a board variant.

	Implement different architecture-specific code in a subfolder for the micro

	Switch pins for board variants in in those same architecture-specific files
(like in lights.cpp)

PIC32

Two PIC32 boards are supported:

	Digilent chipKIT Max32

	CrossChasm C5 OBD Interface

Troubleshooting PIC32 Boards

	No data received over USB?

	If you have UART enabled for a while, then disconnect the UART receiver
(i.e. pull the status pin low and stop touching RTS/CTS), it can cause the
firmware to block trying to write data to UART. Power cycle the board or
leave the UART receiver attached even if nobody is reading data (i.e. keep
the CTS/RTS lines active).

	USB data arriving in bursts?

	Are you also reading data over UART, or do you have something pulling the
UART connect pin high? It’s not always possible to read both USB and UART at
full data rates at the same time.

LPC176x

	NGX Blueboard LPC1768-H

	Ford Prototype Vehicle Interface

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Supported Platforms

NGX Blueboard LPC1768-H

To build for the Blueboard, compile with the flag PLATFORM=BLUEBOARD.

UART

On the LPC17xx, UART1 is used for OpenXC output at the 230000 baud rate.
Like on the chipKIT, hardware flow control (RTS/CTS) is enabled, so CTS must be
pulled low by the receiving device before data will be sent.

	Pin 2.0 - UART1 TX, connect this to the RX line of the receiver.

	Pin 2.1 - UART1 RX, connect this to the TX line of the receiver.

	Pin 2.2 - UART1 CTS, connect this to the RTS line of the receiver.

	Pin 2.7 - UART1 RTS, connect this to the CTS line of the receiver.

UART data is sent only if pin 0.18 is pulled high. If you are using a Bluetooth
module like the BlueSMiRF [https://www.sparkfun.com/products/10269] from
SparkFun, you need to hard-wire 5v into pin 0.18 to actually enabling UART.
Other hardware implementations (like the Ford prototype) may be
able to hook the Bluetooth connection status to this pin instead, to make the
status of UART more dynamic.

Debug Logging

On the Blueboard LPC1768H, logging will be on UART0 at 115200 baud:

	Pin 0.2 - UART0 TX, connect this to the RX line of the receiver

	Pin 0.3 - UART0 RX, connect this to the TX line of the receiver

LED Lights

LEDs are not currently supported on the Blueboard.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Supported Platforms

CrossChasm C5 Interface

CrossChasm’s C5 OBD interface is compatible with the OpenXC cantranslator
firmware. To build for the C5, compile with the flag PLATFORM=CROSSCHASM_C5.

CrossChasm has made the C5 available for purchase [http://crosschasm.com/SolutionCenter/OpenXC.aspx] from their website, and it
comes pre-loaded with the correct bootloader, so you don’t need any additional
hardware to load the OpenXC firmware.

The C5 connects to the CAN1 bus pins [http://openxcplatform.com/vehicle-interface/#obd-pins] on the OBD-II
connector.

Flashing a Pre-compiled Firmware

Assuming your C5 has the bootloader already flashed, once
you have the USB cable attached to your computer and to the C5, follow the same
steps to upload as for the chipKIT Max32.

The C5 units offered directly from the CrossChasm website [http://crosschasm.com/SolutionCenter/OpenXC.aspx] are pre-programmed with the
bootloader.

Bootloader

The C5 can be flashed with the same PIC32 avrdude bootloader [https://github.com/openxc/PIC32-avrdude-bootloader], as the chipKIT.

The OpenXC fork of the bootloader (the previous link) defines a CROSSCHASM_C5 configuration that
exposes a CDC/ACM serial port function over USB. Once the bootloader is flashed, there
is a 5 second window when the unit powers on when it will accept bootloader
commands.

In Linux and OS X it will show up as something like /dev/ACM0, and you can treat this
just as if it were a serial device.

In Windows, you will need to install the stk500v2.inf
<https://raw.github.com/openxc/PIC32-avrdude-bootloader/master/Stk500v2.inf>
driver before the CDC/ACM modem will show up - download that file, right click
and choose Install. The C5 should now show up as a COM port for for 5 seconds on
bootup.

The C5 units offered directly from the CrossChasm website [http://crosschasm.com/SolutionCenter/OpenXC.aspx] are pre-programmed with the
bootloader.

If you need to reflash the bootloader yourself, a ready-to-go .hex file is
available in the GitHub repository [https://raw.github.com/openxc/PIC32-avrdude-bootloader/master/bootloaders/CrossChasm-C5-USB.hex]
and you can flash it with MPLAB IDE/IPE and an ICSP programmer like the
Microchip PICkit 3. You can also build it from source in MPLAB by using the
CrossChasm C5 configuration.

Compiling

The instructions for compiling from source are identical to the chipKIT
Max32 except that PLATFORM=CROSSCHASM_C5 instead of CHIPKIT.

If you will not be using the avrdude bootloader and will be flashing directly
via ICSP, make sure to also compile with BOOTLOADER=0 to enable the program
to run on bare metal.

USB

The micro-USB port on the board is used to send and receive OpenXC messages.

UART

On the C5, UART1A is used for OpenXC output at the 230000 baud rate.
Hardware flow control (RTS/CTS) is enabled, so CTS must be pulled low by the
receiving device before data will be sent.

TODO add pinout of expansion header, probably a picture

UART data is sent only if pin 0.58 (or PORTB BIT 4, RB4) is pulled high (to
5vv). If you are using a Bluetooth module like the BlueSMiRF [https://www.sparkfun.com/products/10269] from SparkFun, you need to hard-wire
5v into this pin to actually enabling UART. To disable UART, pull this pin low
or leave it floating.

Debug Logging

On the C5, logging is on UART3A at 115200 baud (if the firmware was compiled
with DEBUG=1).

LED Lights

The C5 has 2 user controllable LEDs. When CAN activity is detected, the green
LED will be enabled. When USB or Bluetooth is connected, the blue LED will be
enabled.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Supported Platforms

Ford Prototype Vehicle Interface

To build for the Ford prototype, compile with the flag PLATFORM=FORDBOARD.

Flashing a Pre-compiled Firmware

Pre-compiled binaries (built with the BOOTLOADER flag enabled, see all
compiler flags) are compatible with the OpenLPC USB bootloader [https://github.com/openxc/openlpc-USB_Bootloader] - follow the instructions
for Flashing User Code [https://github.com/openxc/openlpc-USB_Bootloader#flashing-user-code] to
update the vehicle interface.

Bootloader

The OpenLPC USB bootloader [https://github.com/openxc/openlpc-USB_Bootloader]
is tested and working, and enables the LPC17xx to appear as a USB drive. See the
documentation in that repository for instructions on how to flash the bootloader
(a JTAG programmer is required).

Compiling

USB Bootloader

If you are running a supported bootloader,
you don’t need any special programming hardware. Compile the firmware to run
under the bootloader:

$ make clean
$ PLATFORM=FORDBOARD BOOTLOADER=1 make -j4

The compiled firmware will be located at
build/lpc17xx/cantranslator-lpc17xx.bin. See the bootloaders page for instructions on how to load the firmware.

Bare Metal

Once the dependencies are installed, attach a
JTAG adapter to your computer and the CAN translator, then compile and flash:

$ make clean
$ PLATFORM=FORDBOARD make -j4
$ PLATFORM=FORDBOARD make flash

The config files in this repository assume your JTAG adapter is the
Olimex ARM-USB-OCD unit. If you have a different unit, modify the
src/lpc17xx/lpc17xx.mk Makefile to load your programmer’s OpenOCD
configuration.

UART

The software configuration is identical to the Blueboard. The
Ford prototype includes an RN-41 on the PCB attached to the RX, TX, CTS and RTS
pins, in addition to the UART status pin.

When a Bluetooth host pairs with the RN-42 and opens an RFCOMM connection, pin
0.18 will be pulled high and the VI will being streaming vehicle data over UART.

Debug Logging

Logging will be on UART0, which is exposed on the bottom of the board at J3, a
5-pin ISP connector.

LED Lights

The Ford prototype has 2 RGB LEDs. If the LEDs are a dim green and red, then the
firmware was not flashed properly and the board is not running.

LED A

	CAN activity detected - Blue

	No CAN activity on either bus - Off

LED B

	USB connected, Bluetooth not connected - Green

	Bluetooth connected, USB in either state - Blue

	Neither USB or Bluetooth connected - Off

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

 	Supported Platforms

Digilent chipKIT Max32

To build for the chipKIT-based Vehicle Interface [http://chipkit-vi.openxcplatform.com/], compile with the flag
PLATFORM=CHIPKIT. The chipKIT is also the default platform, so the flag is
optional.

The chipKIT VI supports up to 2 of the CAN1, CAN2-1 or CAN2-2 buses
simultaneously.

Flashing a Pre-compiled Firmware

These instructions assume your chipKIT is running the stock firmware, the
avrdude bootloader.

USB Cable

You need to have the mini-USB port on the chipKIT connected to your computer
to upload a new firmware. This is different than the micro-USB port that you use
to read vehicle data - see the device connections [http://openxcplatform.com/vehicle-interface/index.html#connections] section
of the OpenXC website [http://openxcplatform.com] to make sure you have the correct cable attached.

Uploading Script

Open a terminal run the upload_hex.sh script from the cantranslator
directory, passing it the path to the .hex file you downloaded:

$ cd cantranslator
$ script/upload_hex.sh <firmware file you downloaded>.hex

The upload_hex.sh script attempts to install all required dependencies
automatically, and it is tested in Cygwin, OS X Mountain Lion, Ubuntu 12.04 and
Arch Linux - other operating systems may need to install the dependencies
manually.

If you have more than one virtual serial (COM) port active, you may need to
explicitly specify which port to use. Pass the port name as the second argument
to the script, e.g. in Linux:

$ script/upload_hex.sh <firmware file you downloaded>.hex /dev/ttyUSB2

and in Windows, e.g. if you needed to use com4 instead of the default
com3:

$ script/upload_hex.sh <firmware file you downloaded>.hex com4

Windows notes

In Windows, this command will only work in Cygwin, not the standard
cmd.exe or Powershell.

If you get errors about $'\r': command not found then your Git configuration
added Windows-style CRLF line endings. Run this first to ignore the CR:

$ set -o igncr && export SHELLOPTS

Dependencies

If the flashing script failed, you may need to install the dependencies
manually.

FTDI Driver

If you are using Windows or OS X, you need to install the FTDI
driver. If you didn’t need to install MPIDE, you can download the driver
separately from FTDI [http://www.ftdichip.com/Drivers/VCP.htm].

AVR Programmer

In order to program the CAN translator, you need to install an AVR programmer.
There are a number of free options that will work.

With MPIDE

If you have MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] installed, that already includes a version of avrdude. You
need to set the MPIDE_DIR environment variable in your terminal to point to
the folder where you installed MPIDE. Once set, you should be able to use
upload_hex.sh [https://github.com/openxc/cantranslator/blob/master/script/upload_hex.sh].

Without MPIDE

If you do not already have MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads] installed (and that’s fine, you don’t really
need it), you can install a programmer seprately:

	Linux - Look for avrdude in your distribution’s package manager.

	OS X - Install avrdude with Homebrew [http://mxcl.github.com/homebrew/].

	
	Windows

	
	Install Cygwin [http://www.cygwin.com] and MPIDE [https://github.com/chipKIT32/chipKIT32-MAX/downloads], and follow the
Installation documentation to configure the MPIDE environment
variables.

Bootloader

The PIC32 avrdude bootloader [https://github.com/openxc/PIC32-avrdude-bootloader] is tested and working and
allows flashing over USB with avrdude. All stock chipKITs are programmed
with a compatible bootloader at the factory.

Compiling

Once the dependencies are installed, attach the chipKIT to
your computer with a mini-USB cable, cd into the src subdirectory, build
and upload to the device.

$ make clean
$ make
$ make flash

If the flash command can’t find your chipKIT, you may need to set the
SERIAL_PORT variable if the serial emulator doesn’t show up as
/dev/ttyUSB* in Linux, /dev/tty.usbserial* in Mac OS X or com3 in
Windows. For example, if the chipKIT shows up as /dev/ttyUSB4:

$ SERIAL_PORT=/dev/ttyUSB4 make flash

and if in Windows it appeared as COM4:

$ SERIAL_PORT=com4 make flash

This build process assumes your chipKIT is running the
avrdude bootloader - all chipKITs come
programmed with a compatible bootloader by default.

IDE Support

It is possible to use an IDE like Eclipse to edit and compile the
project.

	Follow the directions in the above “Installation” section.

	Install Eclipse with the CDT project [http://www.eclipse.org/cdt/]

	In Eclipse, go to
File -> Import -> C/C++ -> Existing Code as Makefile Project and
then select the cantranslator/src folder.

	In the project’s properties, under
C/C++ General -> Paths and Symbols, add these to the include
paths for C and C++:
	${MPIDE_DIR}/hardware/pic32/compiler/pic32-tools/pic32mx/include

	${MPIDE_DIR}/hardware/pic32/cores/pic32

	/src/libs/CDL/LPC17xxLib/inc (add as a “workspace
path”)

	/src/libs/chipKITCAN (add as a “workspace path”)

	/src/libs/chipKITUSBDevice (add as a “workspace
path”)

	/src/libs/chipKITUSBDevice/utility (add as a
“workspace path”)

	/src/libs/chipKITEthernet (add as a “workspace
path”)

	/usr/include (only if you want to use the test suite, which
requires the check C library)

	In the same section under Symbols, if you are building for the
chipKIT define a symbol with the name __PIC32__

	In the project folder listing, select
Resource Configurations -> Exclude from Build for these
folders:
	src/libs

	build

If you didn’t set up the environment variables from the Installation
section (e.g. MPIDE_HOME), you can also do that from within Eclipse
in C/C++ project settings.

There will still be some errors in the Eclipse problem detection, e.g.
it doesn’t seem to pick up on the GCC __builtin_* functions, and
some of the chipKIT libraries are finicky. This won’t have an effect on
the actual build process, just the error reporting.

USB

The micro-USB port on the Digilent Network Shield is used to send and receive
OpenXC messages. The mini-USB cable on the Max32 itself is only used for
re-programming.

UART

On the chipKIT, UART1A is used for OpenXC output at the 230000 baud rate.
Hardware flow control (RTS/CTS) is enabled, so CTS must be pulled low by the
receiving device before data will be sent. There are a few tricky things to
watch out for with UART (i.e. Bluetooth) output on the chipKIT, so make sure to
read this entire section.

UART1A is also used by the USB-Serial connection, so in order to flash the
PIC32, the Tx/Rx lines must be disconnected. Ideally we could leave that UART
interface for debugging, but there are conflicts with all other exposed UART
interfaces when using flow control.

	Pin 0 - U1ARX, connect this to the TX line of the receiver.

	Pin 1 - U1ATX, connect this to the RX line of the receiver.

	Pin 18 - U1ARTS, connect this to the CTS line of the receiver.

	Pin 19 - U1ACTS, connect this to the RTS line of the receiver.

UART data is sent only if pin A1 is pulled low (to ground). If you are using a
Bluetooth module like the BlueSMiRF [https://www.sparkfun.com/products/10269]
from SparkFun, you need to hard-wire GND into this pin to actually enabling
UART. To disable UART, pull A1 high (hard-wire to 5v) or leave it floating.

An additional item to consider when using UART: typically you will want to rig
the chipKIT to be self-powered (either from an external power source or the
vehicle) if you’re going to use UART for adding Bluetooth support. There’s not
much point in being wireless if you still need power from USB.

In that case, move the power jumper from the 5v input on the Network Shield
to A0 (analog input 0). Instead of using 5v to power the board, the firmware can
use it to detect if USB is actually attached or not. The benefit of this is that
if you connect USB, then disconnect it, we can detect that in the firmware and
stop wasting time trying to send data over USB. This will dramatically increase
the throughput over UART.

Debug Logging

On the chipKIT Max32, logging will be on UART2 (Pin 16 - Tx, Pin 17 - Rx) at
115200 baud (if the firmware was compiled with DEBUG=1).

LED Lights

The chipKIT has 1 user controllable LED. When CAN activity is detected, the LED
will be enabled (it’s green).

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

CAN Message Definition

The open source repository does not include the implementation of the functions
declared in signals.h and these are required to compile and program a CAN
transaltor. These functions are dependent on the specific vehicle and message
set, which is often proprietary information to the automaker.

Once the libraries are installed and you run make, you’ll notice that it
won’t compile - you’ll get a bunch of errors about undefined references to
functions from signals.h:

build/pic32/cantranslator.o: In function `updateDataLights()':
cantranslator.cpp:(.text._Z16updateDataLightsv+0x20): undefined reference to `openxc::signals::getCanBusCount()'
cantranslator.cpp:(.text._Z16updateDataLightsv+0x48): undefined reference to `openxc::signals::getCanBusCount()'
cantranslator.cpp:(.text._Z16updateDataLightsv+0xd4): undefined reference to `openxc::signals::getCanBuses()'
build/pic32/cantranslator.o: In function `initializeAllCan()':
cantranslator.cpp:(.text._Z16initializeAllCanv+0x1c): undefined reference to `openxc::signals::getCanBuses()'
cantranslator.cpp:(.text._Z16initializeAllCanv+0x30): undefined reference to `openxc::signals::getCanBusCount()'
build/pic32/cantranslator.o: In function `setup':
cantranslator.cpp:(.text.setup+0x14): undefined reference to `openxc::signals::initialize()'
build/pic32/cantranslator.o: In function `receiveRawWriteRequest(cJSON*, cJSON*)':
cantranslator.cpp:(.text._Z22receiveRawWriteRequestP5cJSONS0_+0x3c): undefined reference to `openxc::signals::getCanBuses()'
build/pic32/cantranslator.o: In function `receiveTranslatedWriteRequest(cJSON*, cJSON*)':
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x44): undefined reference to `openxc::signals::getSignals()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x4c): undefined reference to `openxc::signals::getSignalCount()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x78): undefined reference to `openxc::signals::getSignals()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x80): undefined reference to `openxc::signals::getSignalCount()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0xe4): undefined reference to `openxc::signals::getCommands()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0xec): undefined reference to `openxc::signals::getCommandCount()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x10c): undefined reference to `openxc::signals::getSignals()'
cantranslator.cpp:(.text._Z29receiveTranslatedWriteRequestP5cJSONS0_+0x114): undefined reference to `openxc::signals::getSignalCount()'
build/pic32/cantranslator.o: In function `receiveCan(openxc::pipeline::Pipeline*, CanBus*)':
cantranslator.cpp:(.text._Z10receiveCanPN6openxc8pipeline8PipelineEP6CanBus+0x54): undefined reference to `openxc::signals::decodeCanMessage(openxc::pipeline::Pipeline*, CanBus*, int, unsigned long long)'
build/pic32/cantranslator.o: In function `loop':
cantranslator.cpp:(.text.loop+0x2c): undefined reference to `openxc::signals::getCanBuses()'
cantranslator.cpp:(.text.loop+0x44): undefined reference to `openxc::signals::getCanBusCount()'
cantranslator.cpp:(.text.loop+0x90): undefined reference to `openxc::signals::getCanBuses()'
cantranslator.cpp:(.text.loop+0xa4): undefined reference to `openxc::signals::getCanBusCount()'
cantranslator.cpp:(.text.loop+0xd4): undefined reference to `openxc::signals::loop()'
build/pic32/main.o: In function `main':
main.cpp:(.text.main+0x60): undefined reference to `openxc::signals::getActiveMessageSet()'
build/pic32/main.o: In function `handleControlRequest(unsigned char)':
main.cpp:(.text._Z20handleControlRequesth+0x64): undefined reference to `openxc::signals::getActiveMessageSet()'
main.cpp:(.text._Z20handleControlRequesth+0x8c): undefined reference to `openxc::signals::getActiveMessageSet()'
build/pic32/platform/pic32/canutil.o: In function `openxc::can::initialize(CanBus*)':
canutil.cpp:(.text._ZN6openxc3can10initializeEP6CanBus+0xbc): undefined reference to `openxc::signals::initializeFilters(unsigned long long, int*)'
build/pic32/platform/platform.o: In function `openxc::platform::suspend(openxc::pipeline::Pipeline*)':
platform.cpp:(.text._ZN6openxc8platform7suspendEPNS_8pipeline8PipelineE+0x3c): undefined reference to `openxc::signals::getCanBuses()'
platform.cpp:(.text._ZN6openxc8platform7suspendEPNS_8pipeline8PipelineE+0x50): undefined reference to `openxc::signals::getCanBusCount()'
collect2: ld returned 1 exit status
make: *** [build/pic32/cantranslator-pic32.elf] Error

You have three options to get a working vehicle interface:

	Use a pre-built binary firmware from an automaker

	Create a message set mapping and use the OpenXC Python library [http://python.openxcplatform.com] to auto-generate an implementation of
signals.h. Knowledge of the vehicle’s CAN message is required for this
method.

	Implement the signals.h functions manually

Auto-generated from Mapping

The code generation tools are documented in the code generation input
definitions [http://python.openxcplatform.com/en/latest/code-generation.html].

Once you’ve defined your message set in a JSON file, install the OpenXC Python
library [http://python.openxcplatform.com], then run the
openxc-generate-firmware-code tool to create an implementation of
signals.cpp:

cantranslator/ $ openxc-generate-firmware-code --message-set mycar.json > src/signals.cpp

The firmware should now compile! Don’t modify
the signals.cpp file manually, since it’s generated you should expect it to
be wiped and recreated at any time; always make changes to the JSON instead.

Manual Implementation

You must implement the functions defined in the signals.h header
file. The documentation of those functions describes the expected effect
of each. Implement these in a file called signals.cpp and the code
should now compile.

You must know the CAN message formats of the vehicle you want to use with the
vehicle interface, as you cannot implement these functions without that
knowledge.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

UART Output

You can optionally receive the output data over a UART connection in
addition to USB. The data format is the same as USB - a stream of newline
separated JSON objects.

In the same way that you can send OpenXC writes over USB using the OUT
direction of the USB endpoint, you can send identically formatted
messages in the opposite direction on the serial device - from the host
to the CAN translator. They’ll be processed in exactly the same way.
These write messages are accepted via serial even if USB is connected. One
important difference between reads and writes - write JSON messages must be
separated by a NULL character instead of a newline.

For details on your particular platform like the pins and baud rate, see the
supported platforms.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	OpenXC CAN Translator 4.1 documentation

USB Device Driver

Most users do not need to know the details of the device driver, but for
reference it is documented here.

The CAN translator initializes its USB 2.0 controller as a USB device with three
endpoints. The Android tablet or computer you connect to the translator acts as
the USB host, and must initiate all transfers.

Endpoint 0

This is the standard USB control transfer endpoint. The CAN transalator
has a few control commands:

Version

Version control command: 0x80

The host can retrieve the version of the CAN translator using the
0x80 control request. The data returned is a string containing the
software version of the firmware and the configured vehicle platform in
the format:

Version: 1.0 (c346)

where 1.0 is the software version and c346 is the configured
vehicle.

Reset

Reset control command: 0x81

The CAN transceivers can be re-initialized by sending the 0x81
control request. This command was introduced to work around a bug that
caused the CAN translator to periodically stop responding. The bug still
exists, but there are now workarounds in the code to automatically
re-initialize the transceivers if they stop receiving messages.

Endpoint 1 IN

Endpoint 1 is configured as a bulk transfer endpoint with the IN
direction (device to host). OpenXC JSON messages read from the vehicle
are sent to the host via IN transactions. When the host is ready to
receive, it should issue a request to read data from this endpoint. A
larger sized request will allow more messages to be batched together
into one USB request and give high overall throughput (with the downside
of introducing delay depending on the size of the request).

Endpoint 1 OUT

OpenXC JSON messages created by the host to send to the vehicle (i.e. to
write to the CAN bus) are sent via OUT transactions. The CAN
translator is prepared to accept writes from the host as soon as it
initializes USB, so they can be sent at any time. The messages must be separated
by a NULL character.

There is no special demarcation on these messages to indicate they are writes -
the fact that they are written in the OUT direction is sufficient. Write
messages must be no more than 4 USB packets in size, i.e. 4 * 64 = 256 bytes.

In the same way the CAN translator is pre-configured with a list of CAN
signals to read and parse from the CAN bus, it is configured with a
whitelist of messages and signals for which to accept writes from the
host. If a message is sent with an unlisted ID it is silently ignored.

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	OpenXC CAN Translator 4.1 documentation

Index

 Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

 _static/down-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

_static/plus.png

search.html

 Navigation

 		
 index

 		OpenXC CAN Translator 4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

_static/ajax-loader.gif

_images/logo.png
OpenXX

_static/comment.png

license-disclosure.html

 Navigation

 		
 index

 		OpenXC CAN Translator 4.1 documentation »

Open Source License Disclosure

The OpenXC vehicle interface firmware is an open source project, and in turn
depends on a few other open source projects. If you are building from source, or
have downloaded a pre-compiled binary firmware, the result may contain source
code covered by the following licenses:

cantranslator [https://github.com/openxc/cantranslator]

Copyright (c) 2012 Ford Motor Company
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

		Neither the name of the <organization> nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

emqueue [https://github.com/openxc/emqueue]

Copyright (c) 2013, Ford Motor Company
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

LPCUSB [http://sourceforge.net/projects/lpcusb/]

LPCUSB, an USB device driver for LPC microcontrollers
Copyright (C) 2006 Bertrik Sikken (bertrik@sikken.nl)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

		The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Extended NXP Board Support Package [https://github.com/openxc/nxp-bsp]

Copyright(C) NXP Semiconductors, 2011
All rights reserved.

Software that is described herein is for illustrative purposes only which
provides customers with programming information regarding theLPC products.
This software is supplied “AS IS” without any warranties of any kind, and NXP
Semiconductors and its licensor disclaim any and all warranties, express or
implied, including all implied warranties of merchantability, fitness for a
particular purpose and non-infringement of intellectual property rights. NXP
Semiconductors assumes no responsibility or liability for the use of the
software, conveys no license or rights under any patent, copyright, mask work
right, or any other intellectual property rights in or to any products. NXP
Semiconductors reserves the right to make changes in the software without
notification. NXP Semiconductors also makes no representation or warranty that
such application will be suitable for the specified use without further testing
or modification.

Permission to use, copy, modify, and distribute this software and its
documentation is hereby granted, under NXP Semiconductors’ and its licensor’s
relevant copyrights in the software, without fee, provided that it is used in
conjunction with NXP Semiconductors microcontrollers. This copyright,
permission, and disclaimer notice must appear in all copies of this code.

NXP Common Driver Library for LPCxxx [https://github.com/openxc/nxp-cdl]

Copyright(C) 2012, NXP Semiconductor All rights reserved.
Software that is described herein is for illustrative purposes only which
provides customers with programming information regarding the products. This
software is supplied “AS IS” without any warranties. NXP Semiconductors assumes
no responsibility or liability for the use of the software, conveys no license
or title under any patent, copyright, or mask work right to the product. NXP
Semiconductors reserves the right to make changes in the software without
notification. NXP Semiconductors also make no representation or warranty that
such application will be suitable for the specified use without further testing
or modification.

cJSON [http://sourceforge.net/projects/cjson]

cJSON is distributed under the MIT open source license.
Copyright (c) 2009 Dave Gamble

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

nxpUSBlib [https://github.com/openxc/nxpusblib]

Copyright(C) NXP Semiconductors, 2012
All rights reserved.

Software that is described herein is for illustrative purposes only which
provides customers with programming information regarding the LPC products.
This software is supplied “AS IS” without any warranties of any kind, and NXP
Semiconductors and its licensor disclaim any and all warranties, express or
implied, including all implied warranties of merchantability, fitness for a
particular purpose and non-infringement of intellectual property rights. NXP
Semiconductors assumes no responsibility or liability for the use of the
software, conveys no license or rights under any patent, copyright, mask work
right, or any other intellectual property rights in or to any products. NXP
Semiconductors reserves the right to make changes in the software without
notification. NXP Semiconductors also makes no representation or warranty that
such application will be suitable for the specified use without further testing
or modification.

Permission to use, copy, modify, and distribute this software and its
documentation is hereby granted, under NXP Semiconductors’ and its licensor’s
relevant copyrights in the software, without fee, provided that it is used in
conjunction with NXP Semiconductors microcontrollers. This copyright,
permission, and disclaimer notice must appear in all copies of this code.

 © Copyright 2012, Christopher Peplin.
 Created using Sphinx 1.2.

_static/up.png

_static/up-pressed.png

_static/logo.png
OpenXX

_static/down.png

_static/file.png

