
OpenXC VI Firmware Documentation
Release 7.0.0

Ford Motor Company

November 20, 2015

Contents

1 Getting Started 3
1.1 Development Environment Setup . 3
1.2 Testing with Emulated Data . 5
1.3 Compiling the Default Configuration . 5
1.4 Customizing the VI Configuration . 6
1.5 Compiling with a Custom Configuration . 8

2 Firmware Configuration 11
2.1 Read-only Configuration Examples . 11
2.2 Read-only Raw CAN Configuration Examples . 22
2.3 Custom Handler Configuration . 24
2.4 Writable Configuration Examples . 32
2.5 Writable Raw CAN Configuration Examples . 37
2.6 Diagnostic Configuration Examples . 38
2.7 Bit Numbering and Byte Order . 42
2.8 All Configuration Options Reference . 43
2.9 FAQ . 50

3 Compiling 51
3.1 Example Build Configurations . 51
3.2 Makefile Options . 54
3.3 Troubleshooting . 56
3.4 Dependencies . 57
3.5 Developing in a Native Host OS . 59

4 Supported Embedded Platforms 61
4.1 Ford Reference Vehicle interface . 61
4.2 NGX Blueboard LPC1768-H . 62
4.3 Digilent chipKIT Max32 . 63
4.4 CrossChasm C5 Interface . 65

5 Advanced Firmware Features 67
5.1 Low-level CAN Features . 67
5.2 Binary Output Format . 69
5.3 CAN Bench Testing . 69
5.4 Board Support . 71

6 I/O, Data Format and Commands 73
6.1 Commands . 73

i

6.2 UART (Serial, Bluetooth) . 74
6.3 USB Device . 74

7 Testing 77
7.1 Windows USB Device Driver . 77
7.2 Python Library . 77
7.3 Debugging . 77
7.4 Test Suite . 78
7.5 Functional Test Suite . 78

8 Contributing 79
8.1 Mailing list . 79
8.2 Bug tracker . 79
8.3 Authors and Contributors . 79
8.4 Python Library . 79
8.5 Android Library . 79

9 License 81

ii

OpenXC VI Firmware Documentation, Release 7.0.0

Version 7.0.0

Web http://openxcplatform.com

Documentation http://vi-firmware.openxcplatform.com

Source http://github.com/openxc/vi-firmware

The OpenXC vehicle interface (VI) firmware runs on a microcontroller connected to one or more CAN buses. It
receives either all CAN messages or a filtered subset, performs any unit conversion or factoring required and outputs
a generic version to a USB, Bluetooth or network interface.

Warning: This portion of the site covers advanced topics such as writing and compiling your own firmware from
source. These steps are NOT required for flashing a pre-compiled binary firmware.
If you’ve downloaded a pre-built binary firmware for your car, locate your VI in the list of supported interfaces to
find instructions for programming it. You don’t need anything from the VI firmware documentation itself - most
users don’t need anything in this documentation. Here be dragons!

Contents 1

http://openxcplatform.com
http://vi-firmware.openxcplatform.com
http://github.com/openxc/vi-firmware
http://openxcplatform.com/vehicle-interface/hardware.html

OpenXC VI Firmware Documentation, Release 7.0.0

2 Contents

CHAPTER 1

Getting Started

If you’ve downloaded a pre-built binary firmware for your car, locate your VI in the list of supported interfaces to
find instructions for programming it. You don’t need anything from the VI firmware documentation itself - most users
don’t need anything in this documentation. Really, you can stop here!

The first steps for building custom firmware are:

1. Make sure you have one of the supported vehicle interfaces.

2. Set up your development environment.

3. Compile with emulated data output to make sure your development environment is set up, including whatever
tool or library you plan to use to interact with the VI.

4. Compile the default configuration so you can start reading standard On-Board Diagnostics (OBD-II) data from
your car.

5. To go beyond OBD-II, create a create a configuration file for your car.

6. With a custom configuration in hand, compile with your new config.

1.1 Development Environment Setup

Before you can compile, you need to set up our development environment. You only need to do this once.

When you see $ it means this is a shell command - run the command after the $ but don’t include the $. The shell
commands may also be prefixed with a folder name, meaning it needs to be run from a particular location, e.g. foo/
$ ls means to run ls from the foo folder.

1.1.1 Install Git

You need to install Git to retrieve the source code repository for the vi-firmware.

Windows

Install GitHub for Windows, which includes a GUI for cloning Git repositories hosted at GitHub as well as a Bash
terminal for using Git from the command line.

3

http://openxcplatform.com/vehicle-interface/hardware.html
https://windows.github.com/

OpenXC VI Firmware Documentation, Release 7.0.0

Mac OS X

Install GitHub for Mac, which includes a GUI for cloning Git repositories hosted at GitHub and also installs the git
command line tools.

Linux

If you’re using Linux, you hopefully know what you’re doing and can install Git for your distro of choice. A couple
of examples:

Ubuntu:

$ sudo apt-get install git

Arch Linux:

$ [sudo] pacman -S git

1.1.2 Clone the vi-firmware Repository

On Windows or Mac and you installed the GitHub app, open the vi-firmware repository in you browser and click the
“Clone in Desktop” button.

If you are using git from the command line, clone it like so:

$ git clone https://github.com/openxc/vi-firmware

1.1.3 Install Vagrant (Recommended for All Platforms)

On all platforms, we recommend using the included Vagrant configuration to get compiling as quickly as possible. Va-
grant is a tool that helps developers create and use identical development environments. We include a Vagrantfile
in the repository that Vagrant uses to create a small Linux virtual machine with all of the vi-firmware dependencies
installed. Once installed, you can open a shell in this VM just by running vagrant ssh. The vi-firmware on
the host OS (e.g. your Linux, Windows or OS X machine) is shared to the Vagrant VM at the path /vagrant. You
can use whatever text editor or IDE you prefer in your native OS, and simply do the compilation from within the VM.

1. Install VirtualBox.

2. If using Windows 7 (not required in Windows 8), add the VirtualBox tools to your PATH:
PATH=%PATH%;c:\Program Files\Oracle\VirtualBox. If you aren’t sure how to edit your PATH,
see this guide for all versions of Windows. Log out and back in for the change to take effect.

3. Install Vagrant.

4. Navigate to the vi-firmware repository in the GitHub app, click the gear icon in the top right corner and
select “Open in Git Shell”.

5. In the shell, run vagrant up to initialize the Vagrant VM - this may take up to 10 minutes as it downloads
and installs a number of dependencies in the VM.

6. If the initialization completes with no errors, run vagrant ssh to open a shell in the VM.

7. The vi-firmware directly is shared with the VM in the default home directory. Move into that directory and
compile away:

$ cd vi-firmware
~/vi-firmware $ fab reference build

4 Chapter 1. Getting Started

https://mac.github.com/
https://github.com/openxc/vi-firmware
http://www.vagrantup.com
https://www.virtualbox.org/
https://www.java.com/en/download/help/path.xml
http://docs.vagrantup.com/v2/installation/index.html

OpenXC VI Firmware Documentation, Release 7.0.0

You can edit the source code from your native OS and re-run fab reference build from the Vagrant shell to
compile (to compile for the reference VI, for example). Run vagrant suspend to suspend the VM and vagrant
up again to restore it - it will be much faster after the first run.

1.1.4 Native Development

Don’t want to use Vagrant? There are varying levels of support for compiling in your native OS - see the native
development environment docs.

1.2 Testing with Emulated Data

At this point, we will assume you’ve set up your development environment and continue on to test it.

You can confirm your development environment is set up correctly by compiling the firmware with the default configu-
ration. This build is not configured to read any particular CAN signals or messages, but it allow you to send On-Board
Diagnostic (OBD-II) requests and raw CAN messages for experimentation.

If you are using Vagrant, cd into the /vagrant directory (which is actually a pointer to the vi-firmware directory
on your host computer) and run fab reference build:

$ cd /vagrant
/vagrant $ fab reference emulator build
Compiling for FORDBOARD...
...lots of output...
Compiled successfully for FORDBOARD running under a bootloader.

There will be a lot more output when you run this but it should end with Compiled successfully.... If you
got an error, try and follow what it recommends, then look at the troubleshooting section, and finally ask for help on
the Google Group.

The compiled firmware is located at src/build/FORDBOARD/vi-firmware-FORDBOARD.bin. Find the
instructions for re-flashing your VI on the supported hardware platforms page and flash with this new firmware. For
other platforms, the location will be slightly different in the build directory - e.g. for the CHIPKIT platform it will
be at src/build/CHIPKIT/vi-firmware-CHIPKIT.hex.

Finally, test that you can receive the emulated data output stream using the OpenXC Python library:

1. You should already have the OpenXC Python library installed after running the bootstrap.sh script, but if
not, install the library with pip. Don’t forget a USB backend.

2. Attach the programmed VI to your computer with a USB cable. In Windows, install the VI windows driver.

3. Run openxc-control version from the command line - it should print out the current firmware version
of the attached vehicle interface. If you instead get an error about not being able to find the USB device, make
sure the VI has power (look for an LED).

4. If the version check was successful, run openxc-dump to view the raw data stream of emulated vehicle data
coming from the VI.

1.3 Compiling the Default Configuration

Going beyond emulated data, you can start using your VI with a real vehicle by using the default configuration. default
configuration. This build is not configured to read any particular CAN signals or messages, but it allow you to send
On-Board Diagnostic (OBD-II) requests and raw CAN messages for experimentation.

1.2. Testing with Emulated Data 5

http://python.openxcplatform.com/#installation
http://python.openxcplatform.com/en/latest/#usb
https://github.com/openxc/vi-windows-driver

OpenXC VI Firmware Documentation, Release 7.0.0

Again, assuming you’ve set up your development environment and you have a reference VI from Ford, compile the
default- the default build for the reference VI.

If you are using Vagrant, cd into the /vagrant directory (which is actually a pointer to the vi-firmware directory
on your host computer) and run fab reference build:

$ cd /vagrant
/vagrant $ fab reference build
Compiling for FORDBOARD...
...lots of output...
Compiled successfully for FORDBOARD running under a bootloader.

If you are doing native development, it’s the same process but cd into wherever you put the vi-firmware directory
instead of /vagrant.

Just as with the emulated data build, there will be a lot more output when you run this but it should end with Compiled
successfully.... If you got an error, try and follow what it suggests, then look at the troubleshooting section,
and finally ask for help on the Google Group.

Re-flash your VI (go back to the section on Testing with Emulated Data if you forgot how to do that), and try the
openxc-version command again to make sure it’s running your new version.

You can use the openxc-diag tool (also from the OpenXC Python library) to send a simple OBD-II request for the
engine speed (RPM) to your car. Plug the VI into your car, then attach via USB and run:

$ openxc-diag --id 0x7df --mode 1 --pid 0xc
{"success": true, "bus": 1, "id": 2015, "mode": 1, "pid": 12, "payload": "0x0"}

1.4 Customizing the VI Configuration

The open source VI firmware doesn’t include any CAN message definitions. If you know the details of your CAN sig-
nals, you can add your own implementation of the functions defined in signals.h to a file named signals.cpp.

In this example, we’ll pick a simple use case and walk through how to configure and compile the firmware. You’ll
need to be comfortable getting around at the command line, but you don’t need to know any C++. The VI firmware
can be developed in Windows, Linux or Mac OS X.

Let’s say we have a vehicle with a high speed CAN bus on the standard HS pins, connecting to the “CAN1” controller
on our vehicle interface. There’s a CAN message on this bus sent by an ECU, and we want to read one numeric signal
from the message - for this example, let it be the accelerator pedal position as a percentage.

1.4.1 CAN Message and Signal Details

The message contains driver control signals, so we’ll give it the name Driver_Controls so we can keep track of
it. The message ID is 0x102.

In the message, there is a signal we’ll call Accelerator_Pedal_Pos that starts at bit 5 and is 7 bits wide - enough
to represent pedal positions from 0 to 100.

The value on the bus is exactly how we want it to appear in the translated version over USB or Bluetooth. We want
the name to be accelerator_pedal_position and we want to hide the rest of the details. We want the output
format, sent via USB and UART (i.e. Bluetooth) from the VI to be the standard translated OpenXC message format
(see the message format specification):

{"name": "accelerator_pedal_position", "value": 42}

6 Chapter 1. Getting Started

http://vi.openxcplatform.com
https://github.com/openxc/openxc-message-format

OpenXC VI Firmware Documentation, Release 7.0.0

1.4.2 JSON Configuration

The configuration files for the VI firmware are stored as a single JSON object in a file. JSON is a human-readable data
format that’s a alternative to XML - we use it because it’s easy to parse, (sorta) easy to write by hand and the syntax is
fairly obvious.

CAN Bus Definition

We’ll start by defining the CAN buses that we want to connect - open a file called accelerator-config.json
and add this:

{ "name": "accelerator",
"buses": {

"hs": {
"controller": 1,
"speed": 500000

}
}

}

• We gave this configuration the name accelerator - that will show up when we query for the query from the
VI.

• We defined 1 CAN bus and called it hs for “high speed” - the name is arbitrary but we’ll use it later on, so make
it short and sweet. hs, ms, info - these are good names.

• We configured this bus to be connected to the #1 controller on the VI - that’s typically what’s connected to the
high speed bus in most vehicles.

• We set the speed of this CAN bus at 500Kbps - the speed attribute is in bytes per second, so we set it to
500000.

CAN Message Definition

Next up, let’s define the CAN message we want to translate from the bus. Modify the file so it looks like this:

{ "name": "accelerator",
"buses": {

"hs": {
"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"name": "Driver_Controls",
"bus": "hs"

}
}

}

• We added a messages field to the JSON object.

• We added a 0x102 field to messages - that’s our CAN message’s ID and we use it here as a “key” for the
object.

• Within the 0x102 message object:

1.4. Customizing the VI Configuration 7

http://en.wikipedia.org/wiki/JSON

OpenXC VI Firmware Documentation, Release 7.0.0

• We set the name of the message. This is just used in comments so we can keep track of which message is which,
rather than memorizing the ID.

• We set the bus field to hs, so this message will be pulled from the bus we defined (and named hs).

CAN Signal Definition

Don’t stop yet...we have to define our CAN signal before anything will be translated. Modify the file again:

{ "name": "accelerator",
"buses": {

"hs": {
"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"name": "Driver_Controls",
"bus": "hs",
"signals": {

"Accelerator_Pedal_Pos": {
"generic_name": "accelerator_pedal_position",
"bit_position": 5,
"bit_size": 7

}
}

}
}

}

• We added a signals field to the 0x102 message object, after the name. The order doesn’t matter, just watch
out for the commas required after each field and value pair. There’s no comma after the last field in an object.

• We added an Accelerator_Pedal_Pos field in the signals object - that’s the name of the signal, and
like the message name, this is just for human readability.

• The generic_name is what the name field will be in the translated format over USB and Bluetooth - we set
it to accelerator_pedal_position.

• We set the bit_position and bit_size for the signal.

That’s it - the configuration is finished. When we compile the VI firmware with this configuration, it will read our
CAN message from the bus, parse and translate it into a JSON output message with a name and value, and send it
out over USB and Bluetooth. Next, we’ll walk through how to do the compilation with your config.

1.5 Compiling with a Custom Configuration

The VI firmware doesn’t understand the JSON configuration file format natively, so next you have to convert it to a
C++ implementation. The OpenXC Python library includes a tool that will generate the C++ for signals.cpp
from your configuration file, so you still don’t have to write any code.

You should already have the Python library installed from the environment setup you did earlier (and if not, run pip
install openxc). Assuming the accelerator-config.json file we created is in our home directory, run this to
generate a valid signals.cpp for our CAN signal:

8 Chapter 1. Getting Started

OpenXC VI Firmware Documentation, Release 7.0.0

vi-firmware/src $ openxc-generate-firmware-code --message-set ~/accelerator-config.json > signals.cpp

and then re-compile the firmware:

vi-firmware $ fab reference build
Compiling for FORDBOARD...
...
15 Compiling build/FORDBOARD/signals.o
Producing build/FORDBOARD/vi-firmware-FORDBOARD.elf
Producing build/FORDBOARD/vi-firmware-FORDBOARD.bin
Compiled successfully for FORDBOARD running under a bootloader.

Success! The compiled firmware is located at build/FORDBOARD/vi-firmware-FORDBOARD.bin. We can
use the same VI re-flashing procedure that we used for a binary firmware from an automaker with our custom firmware
- the process is going to depend on the VI you have, so see the list of supported VIs to find the right instructions.

There’s a lot more you can do with the firmware - many more CAN signals simultaneously, raw CAN messages,
diagnostic reqwuests, advanced data transformation, etc. For complete details, see the VI Firmware docs. You can
find the right PLATFORM value for your VI in the VI firmware supported platforms page.

1.5. Compiling with a Custom Configuration 9

http://vi-firmware.openxcplatform.com/
http://vi-firmware.openxcplatform.com/en/latest/platforms/platforms.html

OpenXC VI Firmware Documentation, Release 7.0.0

10 Chapter 1. Getting Started

CHAPTER 2

Firmware Configuration

If you cannot use a pre-built binary firmware from an automaker you can create a VI configuration file and use the
code generation tool in the OpenXC Python library. Many examples of configuration files are included in the docs, as
well as a complete reference for all configuration options

Knowledge of the car’s CAN messages is required to build a custom configuration file. If you’re just looking to get
some data out of your car you most likely want a binary firmware from your car’s maker. If they don’t offer one, get
together with the community to reverse engineer it!

2.1 Read-only Configuration Examples

If you haven’t created a custom firmware for the OpenXC VI yet, we recommend the getting started with custom data
guide.

For all examples, the name field for a message is optional but strongly encouraged to help keep track of the mapping
between a message ID and something human readable.

When an example refers to “sending” a simple vehicle message or CAN message, it means sending to the app developer
via one of the output interfaces (e.g. USB, Bluetooth) and not sending to the CAN bus. For examples of configuring
writable messages and signals that do write back to the CAN bus, see the write configuration examples.

• One Bus, One Numeric Signal
• Transformed Numeric Signal
• One Bus, One Boolean Signal
• One Bus, One State-based Signal
• Combined State-based Signal
• Two Buses, Two Signals
• Limited Simple Vehicle Message Signal Rate
• Limited Simple Message Rate if Unchanged
• Send Signal on Change Only
• Separate Files for Message Sets
• Mapped from a DBC File
• Same Message ID, Two Buses

2.1.1 One Bus, One Numeric Signal

We want to read a single, numeric signal from a high speed bus on controller 1. The signal is 7 bits wide,
starting from bit 5 in message ID 0x102. We want the name of the signal for OpenXC app developers to be

11

http://openxcplatform.com/vehicle-interface/firmware.html
http://python.openxcplatform.com/en/latest/tools/codegen.html
http://vi-firmware.openxcplatform.com/en/master/getting-started/getting-started.html
http://vi-firmware.openxcplatform.com/en/master/getting-started/getting-started.html

OpenXC VI Firmware Documentation, Release 7.0.0

my_openxc_measurement.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7

}
}

}
}

}

With this configuration, the VI will publish the received CAN signal using the OpenXC simple vehicle message format,
e.g. when using the JSON output format:

{"name": "my_openxc_measurement", "value": 42}

2.1.2 Transformed Numeric Signal

We want to read the same signal as in the One Bus, One Numeric Signal example, but we want to transform the value
with a factor and offset before publishing it. The value on CAN must be multiplied by -1.0 and offset by 1400.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400

}
}

}
}

}

We added the factor and offset attributes to the signal.

12 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

2.1.3 One Bus, One Boolean Signal

We want to read a boolean signal from a high speed bus on controller 1. The signal is 1 bits wide, start-
ing from bit 32 in message ID 0x103. We want the name of the signal for OpenXC app developers to be
my_boolean_measurement. Because it is a boolean type, the value will appear as true or false in the JSON
for app developers.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x103": {
"bus": "hs",
"signals": {

"My_Boolean_Signal": {
"generic_name": "my_boolean_measurement",
"bit_position": 32,
"bit_size": 1,
"decoder": "booleanDecoder"

}
}

}
}

}

We set the decoder for the signal to the booleanDecoder, one of the built-in signal decoders - this will transform
the numeric value from the bus (a 0 or 1) into first-class boolean values (true or false).

With this configuration, the VI will publish the received CAN signal using the OpenXC simple vehicle message format,
e.g. when using the JSON output format:

{"name": "my_boolean_measurement", "value": true}

2.1.4 One Bus, One State-based Signal

We want to read a signal from a high speed bus on controller 1 that has numeric values corresponding to a set of states
- what we call a state-based signal

The signal is 3 bits wide, starting from bit 28 in message ID 0x104. We want the name of the signal for OpenXC app
developers to be active_state. There are 6 valid states from 0-5, and we want those to appears as the state strings
a through f in the JSON for app developers.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x104": {
"bus": "hs",
"signals": {

"My_State_Signal": {
"generic_name": "active_state",
"bit_position": 28,

2.1. Read-only Configuration Examples 13

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

"bit_size": 3,
"states": {

"a": [0],
"b": [1],
"c": [2],
"d": [3],
"e": [4],
"f": [5]

}
}

}
}

}
}

We set the states field for the signal to a JSON object, mapping the string value for each state to the numerical
values to which it corresponds. This automatically will set the decoder to the stateDecoder, one of the built-in
signal decoder functions.

With this configuration, the VI will publish the received CAN signal using the OpenXC simple vehicle message format,
e.g. when using the JSON output format:

{"name": "active_state", "value": "a"}

2.1.5 Combined State-based Signal

We want to read the same state-based signal from One Bus, One State-based Signal but we want the values 0-3 on the
bus to all correspond with state a and values 4-5 to the string state b.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x104": {
"bus": "hs",
"signals": {

"My_State_Signal": {
"generic_name": "active_state",
"bit_position": 28,
"bit_size": 3,
"states": {

"a": [0, 1, 2, 3],
"b": [4, 5]

}
}

}
}

}
}

Each state string maps to an array - this can seem unnecessary when you only have 1 numeric value for each state, but
it allows combined mappings as in this example.

14 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

2.1.6 Two Buses, Two Signals

We want to read two numeric signals - one from a message on a high speed bus on controller 1, and the other from a
message on a medium speed bus on controller 2.

The signal on the high speed bus is 12 bits wide, starting from bit 11 in message ID 0x108. We want the name of the
signal for OpenXC app developers to be my_first_measurement.

The signal on the medium speed bus 14 bits wide, starting from bit 0 in message ID 0x90. We want the name of the
signal for OpenXC app developers to be my_second_measurement.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

},
"ms": {

"controller": 2,
"speed": 125000

}
},
"messages": {

"0x108": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_first_measurement",
"bit_position": 11,
"bit_size": 12

}
}

},
"0x90": {

"bus": "ms",
"signals": {

"My_Other_Signal": {
"generic_name": "my_second_measurement",
"bit_position": 0,
"bit_size": 14

}
}

}
}

}

We added the second bus to the buses field and assigned it to controller 2. We added the second message object and
made sure to set its bus field to ms.

With this configuration, the VI will publish the received CAN signal using the OpenXC simple vehicle message format,
e.g. when using the JSON output format:

{"name": "my_first_measurement", "value": 42}
{"name": "my_second", "value": 942}

2.1.7 Limited Simple Vehicle Message Signal Rate

We want to read the same signal as in the One Bus, One Numeric Signal example, but we want it to be sent at a
maximum of 5Hz. We want the firmware to pick out messages at a regular period, but we don’t care which data is

2.1. Read-only Configuration Examples 15

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

dropped in order to stay under the maximum.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"max_frequency": 5

}
}

}
}

}

We set the max_frequency field of the signal to 5 (meaning 5Hz) - the firmware will automatically handle skipping
messages to stay below this limit.

2.1.8 Limited Simple Message Rate if Unchanged

We want the same signal from Limited Simple Vehicle Message Signal Rate at a limited rate, but we don’t want to lose
any information - if the value of the signal changes, we want it to be sent regardless of the max frequency. Repeated,
duplicate signal values are fairly common in vehicles, where a signal is sent at a steady frequency even if the value
hasn’t changed. For this example, we want to preserve all information - if a signal changes, we want to make sure the
data is sent.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"max_frequency": 5,
"force_send_changed": true

}
}

}
}

}

We added the force_send_changed field to the signal, which will make sure the signal is sent immediately when
the value changes. This rate limiting is lossless.

16 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

2.1.9 Send Signal on Change Only

We want to limit the rate of a signal as in Limited Simple Message Rate if Unchanged, but we want to be more strict -
the signal should only be published if it actually changes.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"send_same": false

}
}

}
}

}

We accomplish this by setting the send_same field to false. This is most appropriate for boolean and state-based
signals where the transition is most important. Considering that a host device may connect to the VI after the message
has been sent, using this field has the potential of making it difficult to tell the current state of the vehicle on startup
- you have to wait for a state change before knowing any values. For that reason, we’ve moved away from using this
for most firmware (using a combination of a max_frequency of 1Hz and force_send_changed == true)
but the option is still available.

2.1.10 Separate Files for Message Sets

Starting from the Two Buses, Two Signals example, we want to split up the configuration into mutiple files because it’s
getting too big and hard to follow. This will especially be true as we add more message and signals.

Starting from this complete configuration:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

},
"ms": {

"controller": 2,
"speed": 125000

}
},
"messages": {

"0x108": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_first_measurement",
"bit_position": 11,

2.1. Read-only Configuration Examples 17

OpenXC VI Firmware Documentation, Release 7.0.0

"bit_size": 12
}

}
},
"0x90": {

"bus": "ms",
"signals": {

"My_Other_Signal": {
"generic_name": "my_second_measurement",
"bit_position": 0,
"bit_size": 14

}
}

}
}

}

we move the messages that we want to read from the hs bus to the file hs.json:

{
"messages": {

"0x108": {
"signals": {

"My_Signal": {
"generic_name": "my_first_measurement",
"bit_position": 11,
"bit_size": 12

}
}

}
}

}

and we move the messages that we want to read from the ms bus to the file ms.json:

{
"messages": {

"0x90": {
"signals": {

"My_Other_Signal": {
"generic_name": "my_second_measurement",
"bit_position": 0,
"bit_size": 14

}
}

}
}

}

Notice in both of these files, the messages no longer have the bus attribute - we’re instead going to specify that in the
top level configuration:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

},
"ms": {

"controller": 2,

18 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

"speed": 125000
}

},
"mappings": [

{"mapping": "hs.json", "bus": "hs"},
{"mapping": "ms.json", "bus": "ms"}

]
}

The primary advantage of using separate files is readability, but it also makes the message definitions more re-usable
between vehicle platforms and buses. For example, we could quickly parse all of the messages from the ms.json
mapping file from the hs bus instead of ms by flipping the bus attribute in the top-level config file.

2.1.11 Mapped from a DBC File

If you use Vector DBC files to store your “gold standard” CAN signal definitions, you can save some effort by
exporting the DBC to an XML file and merging it with your VI configuration file. You won’t need to manually copy
the bit_position, bit_size, factor and offset attributes.

If we are to implement One Bus, One Numeric Signal manually, we would use this configuration file:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400

}
}

}
}

}

If the message and signal is defined in a DBC file, we can save some effort. Using a program like Vector CANdb++,
export the DBC file to XML. Place the XML file in the same directory as your JSON configuration file. We need to
first split up the configuration into a mapped messages file and a top-level config, as in Separate Files for Message
Sets example.

In our config.json:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"mappings": [

{"mapping": "hs.json", "bus": "hs"}

2.1. Read-only Configuration Examples 19

OpenXC VI Firmware Documentation, Release 7.0.0

]
}

and in hs.json:

{
"messages": {

"0x102": {
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400

}
}

}
}

}

Now that we have the DBC exported to an XML file (we’ll assume it’s named exported-hs.xml), we can remove
the bit_position, bit_size, factor and offset fields and let them be imported from the XML - the only
thing required is a generic_name:

In our config.json:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"mappings": [

{"mapping": "hs.json",
"bus": "hs",
"database": "exported-hs.xml"}

]
}

and in hs.json:

{
"messages": {

"0x102": {
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement"

}
}

}
}

}

It’s not huge savings for 1 signal, but once you get a dozen it can save a lot of effort and opportunities for bugs.

20 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

2.1.12 Same Message ID, Two Buses

One shortcoming of a single configuration file is that you can’t define a CAN message with the same ID to exist on
two different, buses. For example, this isn’t value JSON because the 0x100 key is repeated:

{
"messages": {

"0x100": {
"bus": "hs"

},
"0x100": {

"bus": "ms"
}

}
}

Instead, you can use mappings files as in Separate Files for Message Sets and put the messages for each bus in separate
files. Here’s the main configuration file:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

},
"ms": {

"controller": 2,
"speed": 125000

}
},
"mappings": [

{"mapping": "hs.json", "bus": "hs"},
{"mapping": "ms.json", "bus": "ms"}

]
}

and here’s hs.json:

{
"messages": {

"0x100": {
"My_Signal": {

"generic_name": "my_first_measurement",
"bit_position": 3,
"bit_size": 7

}
}

}
}

and finally, ms.json:

{
"messages": {

"0x100": {
"signals": {

"My_Other_Signal": {
"generic_name": "my_second_measurement",
"bit_position": 0,
"bit_size": 14

2.1. Read-only Configuration Examples 21

OpenXC VI Firmware Documentation, Release 7.0.0

}
}

}
}

}

The two different CAN messages with the same ID can co-exist in these separate files, linked as mappings through the
main config.

2.2 Read-only Raw CAN Configuration Examples

If you don’t care about abstracting the details of CAN messages from developers (or perhaps you’re the only developer
and you’re working directly with CAN data), you can configure the VI to output full, low-level CAN messages. You
can read every message or a filtered subset, but be aware that not every VI has enough horsepower to send every CAN
messages through as JSON.

• Unfiltered Raw CAN
• Filtered Raw CAN
• Unfiltered Raw CAN with Limited, Variable Data Rate
• Unfiltered Raw CAN with Strict, Limited Data Rate
• Simple Messages and CAN Messages Together

2.2.1 Unfiltered Raw CAN

We want to read all raw CAN messages from a bus at full speed. Be aware that the VI hasn’t been optimized for this
level of throughput, and it’s not guaranteed at this time that messages will not be dropped. We recommend using rate
limiting, which can dramatically decrease the bandwidth required without losing any information.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000,
"raw_can_mode": "unfiltered"

}
}

}

With this configuration, the VI will publish all CAN messages it receives using the OpenXC raw CAN message format,
e.g. when using the JSON output format:

{"bus": 1, "id": 1234, "value": "0x12345678"}

2.2.2 Filtered Raw CAN

We want to read only the message with ID 0x21 from a high speed bus on controller 1.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000,
"raw_can_mode": "filtered"

22 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format#raw-can-message-format

OpenXC VI Firmware Documentation, Release 7.0.0

}
},
"messages": {

"0x21": {
"bus": "hs"

}
}

}

We added the 0x21 message and assigned it to bus hs, but didn’t define any signals (it’s not necessary when using
the raw CAN mode).

This configuration will cause the VI to publish using the OpenXC raw CAN message format, but you will only received
message 0x21.

2.2.3 Unfiltered Raw CAN with Limited, Variable Data Rate

We want to read all raw CAN messages from a bus, but we don’t want the output interface to be overwhelmed by
repeated duplicate messages. This is fairly common in vehicles, where a message is sent at a steady frequency even
if the value hasn’t changed. For this example, we want to preserve all information - if a message changes, we want to
make sure the data is sent.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000,
"raw_can_mode": "unfiltered",
"max_message_frequency": 1,
"force_send_changed": true

}
}

}

We combine two attributes to both limit the data rate from raw CAN messages, and also make sure the transfer is
lossless. The max_message_frequency field sets the maximum send frequency for CAN messages that have not
changed to 1Hz. We also set the force_send_changed field to true, which will cause a CAN message with a
new value to be sent to the output interface immediately, even if it would go above the 1Hz frequency. The default is
true, so we could also leave this parameter out for the same effect. The result is that each CAN message is sent at a
minimum of 1Hz and a maximum of the true rate of change for the message.

2.2.4 Unfiltered Raw CAN with Strict, Limited Data Rate

We want to read all raw CAN messages as in Unfiltered Raw CAN with Limited, Variable Data Rate but we want to
set a strict limit on the read frequency of each CAN message. We don’t care if we skip some CAN messages, even if
they have new data - the maximum frequency is the most important thing.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000,
"raw_can_mode": "unfiltered",
"max_message_frequency": 1,
"force_send_changed": false.

}
}

}

2.2. Read-only Raw CAN Configuration Examples 23

https://github.com/openxc/openxc-message-format#raw-can-message-format

OpenXC VI Firmware Documentation, Release 7.0.0

We set the force_send_changed field to false so the firmware will strictly enforce the max message frequency.

2.2.5 Simple Messages and CAN Messages Together

We want to read the same signal as in the One Bus, One Numeric Signal example, but we also want to receive all
unfiltered CAN messages simultaneously.

{ "buses": {
"hs": {

"controller": 1,
"raw_can_mode": "unfiltered",
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7

}
}

}
}

}

We added set the raw_can_mode for the bus to unfiltered, as in Unfiltered Raw CAN. No other changes are
required - the CAN and simple vehicle messages co-exist peacefully. If we set raw_can_mode to filtered, it
would only send the raw message for 0x102, where we’re getting the numeric signal.

With this configuration, the VI will publish a mixed stream of OpenXC messages, both the CAN message format, and
the simple vehicle message format, e.g. when using the JSON output format:

{"bus": 1, "id": 258, "value": "0x12345678"}
{"name": "my_openxc_measurement", "value": 42}

2.3 Custom Handler Configuration

Sometimes a bit of C++ is required beyond the JSON configuration to implement advanced features. You can option-
ally inject your own code into the generated C++ file, so you can still take advantage of the configuration file for the
simple signals.

• Custom Transformed Numeric Signal
• Transformed with Signal Reference
• Composite Signal
• Initializer Function
• Looper Function
• Ignore Depending on Value

24 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#can-message
https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

2.3.1 Custom Transformed Numeric Signal

Similar to the Transformed Numeric Signal example, we want to modify a numeric value read from a CAN signal
before sending it to the app developer, but the the desired transformation isn’t as simple as an offset. We want to read
the same signal as before, but if it’s below 100 it should be rounded down to 0. We want our custom transformation to
happen after using the existing factor and offset.

To accomplish this, we need to know a little C - we will write a custom signal decoder to make the transformation.
Here’s the JSON configuration:

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400,
"decoder": "ourRoundingDecoder"

}
}

}
},
"extra_sources": [

"my_handlers.cpp"
]

}

We set the decoder for the signal to ourRoundingDecoder, and we’ll define that in a separate file named
my_handlers.cpp. We also added the extra_sources field, which is a list of the names of C++ source files
on our path to be included with the generated firmware code.

In my_handlers.cpp:

/* Round the value down to 0 if it's less than 100. */
float ourRoundingDecoder(CanSignal* signal, CanSignal* signals,

int signalCount, float value, bool* send) {
if(value < 100) {

value = 0;
}
return value;

}

After being transformed with the factor and offset for the signal from the configuration file, the value is passed to our
decoder. We make whatever custom transformation required and return the new value.

There are a few other valid type signatures for these custom value decoders - for converting numeric values to boolean
or state-based signals.

2.3. Custom Handler Configuration 25

OpenXC VI Firmware Documentation, Release 7.0.0

2.3.2 Transformed with Signal Reference

We need to combine the values of two signals from a CAN message to create a single value - one signal is the absolute
value, the other is the sign.

Both signals are on the high speed bus in the message with ID 0x110. The absolute value signal is 5 bits wide,
starting from bit 2. The sign signal is 1 bit wide, starting from bit 12 - when the value of the sign signal is
0, the final value should be negative. We want to the final value to be sent to app developers with the name
my_signed_measurement.

We will use a custom decoder for the signal to reference the sign signal’s last value when transforming the absolute
value signal.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x110": {
"bus": "hs",
"signals": {

"My_Value_Signal": {
"generic_name": "my_signed_measurement",
"bit_position": 2,
"bit_size": 5,
"decoder": "ourSigningDecoder"

},
"My_Sign_Signal": {

"generic_name": "sign_of_signal",
"bit_position": 12,
"bit_size": 1,
"decoder": "ignoreDecoder"

}
}

}
},
"extra_sources": [

"my_handlers.cpp"
]

}

We don’t want to the sign signal to be sent separately on the output interfaces, but we need the firmware to read and
store its value so we can refer to it from our custom decoder. We set the sign signal’s decoder to ignoreDecoder
which will still process and store the value, but withold it from the output data stream.

For the absolute value signal, we set the decoder to a custom function where we look up the sign signal and use its
value to transform the absolute value. In my_handlers.cpp:

/* Load the last value for the sign signal and multiply the absolute value
by it. */
float ourRoundingDecoder(CanSignal* signal, CanSignal* signals,

int signalCount, float value, bool* send) {
CanSignal* signSignal = lookupSignal("sign_of_signal",

signals, signalCount);

if(signSignal == NULL) {
debug("Unable to find sign signal");

26 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

*send = false;
} else {

if(signSignal->lastValue == 0) {
// left turn
value *= -1;

}
}
return value;

}

We use the lookupSignal‘ function to load a struct representing the sign_of_signal CAN signal we defined in
the configuration, and check the lastValue attribute of the struct. If for some reason we aren’t able to find the
configured sign signal, lookupSignal will return NULL and we can stop hold the output of the final value by
flipping *send to false. The firmware will check the value of *send after each call to a decoder to confirm if the
translation pipeline should continue.

One slight problem with this approach: there is currently no guaranteed ordering for the signals. It’s possible the
lastValue for the sign signal isn’t from the same message as the absolute value signal you are current handling in
the function. With a continuous value, there’s only a small window where this could happen, but if you must be sure
the values came from the same message, you may need to write a Composite Signal.

2.3.3 Composite Signal

We want complete control over the output of a measurement from the car. We have a CAN message that includes 3
different signals that represent a GPS latitude value, and want to combine them into a single value in degrees.

The three signals are in the message 0x87 on a high speed bus connected to controller 1. The three signals:

• The whole latitude degrees signal starts at bit 10 and is 8 bits wide. The value on CAN requires an offset of
-89.0.

• The latitude minutes signal starts at bit 18 and is 6 bits wide.

• The latitude minute fraction signal starts at bit 24 and is 14 bits wide. The value on CAN requires a factor of
.0001.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x87": {
"bus": "hs",
"handlers": ["latitudeMessageHandler"],
"signals": {

"Latitude_Degrees": {
"generic_name": "latitude_degrees",
"bit_position": 10,
"bit_size": 8,
"offset": -89,
"ignore": true

},
"Latitude_Minutes": {

"generic_name": "latitude_minutes",
"bit_position": 18,
"bit_size": 6,

2.3. Custom Handler Configuration 27

OpenXC VI Firmware Documentation, Release 7.0.0

"ignore": true
},
"Latitude_Minute_Fraction": {

"generic_name": "latitude_minute_fraction",
"bit_position": 24,
"bit_size": 14,
"factor": 0.0001,
"ignore": true

},
}

}
},
"extra_sources": [

"my_handlers.cpp"
]

}

We made two changes to the configuration from a simple translation config:

• We set the ignore field to true for each of the component signals in the message. The signal definitions
(i.e. the position, offset, etc) will be included in the firmware build so we can access it from a custom message
handler, but the signals will not be processed by the normal translation stack.

• We set the handlers for the 0x87 message to an array containing our custom message handler,
latitudeMessageHandler. This field should be an array as you can provide multiple message handlers.
You could just call multiple handlers from a single handler function, but having them all defined in the configu-
ration file makes the behavior more clear at a glance.

In my_handlers.cpp:

/* Combine latitude signals split into their components (degrees,

* minutes and fractional minutes) into 1 output message: latitude in

* degrees with with decimal precision.

*
* The following signals must be defined in the signal array, and they must

* all be contained in the same CAN message:

*
* * latitude_degrees

* * latitude_minutes

* * latitude_minutes_fraction

*
* This is a message handler, and takes care of sending the output message.

*
* messageId - The ID of the received GPS latitude CAN message.

* data - The CAN message data containing all GPS latitude information.

* signals - The list of all signals.

* signalCount - The length of the signals array.

* send - (output) Flip this to false if the message should not be sent.

* pipeline - The pipeline that wraps the output devices.

*
* This type signature is required for all custom message handlers.

*/
void latitudeMessageHandler(CanMessage* message, CanSignal* signals,

int signalCount, Pipeline* pipeline) {
// Retrieve the CanSignal struct representations of the 3 latitude
// component signals. These are still included in the firmware build
// when the 'ignore' flag was true for the signals.
CanSignal* latitudeDegreesSignal =

lookupSignal("latitude_degrees", signals, signalCount);

28 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

CanSignal* latitudeMinutesSignal =
lookupSignal("latitude_minutes", signals, signalCount);

CanSignal* latitudeMinuteFractionSignal =
lookupSignal("latitude_minute_fraction", signals, signalCount);

// Confirm that we have all required signal components
if(latitudeDegreesSignal == NULL ||

latitudeMinutesSignal == NULL ||
latitudeMinuteFractionSignal == NULL) {

debug("One or more GPS latitude signals are missing");
return;

}

// begin by assuming we will send the message, no errors yet
bool send = true;

// Decode and transform (using any factor and offset defined in the
// CanSignal struct) each of the component signals from the message data
// preTranslate is intended to be used in conjunction with postTranslate
// - together they keep metadata about the receive signals in memory.
float latitudeDegrees = preTranslate(latitudeDegreesSignal, data, &send);
float latitudeMinutes = preTranslate(latitudeMinutesSignal, data, &send);
float latitudeMinuteFraction = preTranslate(

latitudeMinuteFractionSignal, data, &send);

// if we were able to decode all 3 component signals (i.e. none of the
// calls to preTranslate flipped 'send' to false
if(send) {

float latitude = (latitudeMinutes + latitudeMinuteFraction) / 60.0;
if(latitudeDegrees < 0) {

latitude *= -1;
}
latitude += latitudeDegrees;

// Send the final latitude value to the output interfaces (via the
// pipeline)
sendNumericalMessage("latitude", latitude, pipeline);

}

// Conclude by updating the metadata for each of the component signals
// with postTranslate
postTranslate(latitudeDegreesSignal, latitudeDegrees);
postTranslate(latitudeMinutesSignal, latitudeMinutes);
postTranslate(latitudeMinuteFractionSignal, latitudeMinuteFraction);

}

A more complete, functional example of a message handler is included in the VI firmware repository - one that handles
both latitude and longitude in a CAN message. There is also additional documentation on the message handler type
signature.

2.3.4 Initializer Function

We want to initialize a counter when the VI powers up that we will use from some custom signal decoder.

{ "buses": {
"hs": {

"controller": 1,

2.3. Custom Handler Configuration 29

https://github.com/openxc/vi-firmware/blob/master/src/shared_handlers.h#L205

OpenXC VI Firmware Documentation, Release 7.0.0

"raw_can_mode": "unfiltered",
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7

}
}

}
},
"initializers": [

"initializeMyCounter"
],
"extra_sources": [

"my_initializers.cpp"
]

}

We added an initializers field, which is an array containing the names of C functions matching the initializer
type signature.

In my_initializers.cpp:

int MY_COUNTER;
void initializeMyCounter() {

MY_COUNTER = 42;
}

This isn’t a very useful initializer, but there much more you could do - you’ll want to look into the lowest level APIs
in the firmware source. Look through the .h files, where most functions are documented.

2.3.5 Looper Function

We want to increment a counter every time through the main loop of the firmware, regardless of whatever CAN
messages we may have received.

{ "buses": {
"hs": {

"controller": 1,
"raw_can_mode": "unfiltered",
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7

}

30 Chapter 2. Firmware Configuration

https://github.com/openxc/vi-firmware

OpenXC VI Firmware Documentation, Release 7.0.0

}
}

},
"loopers": [

"incrementMyCounter"
],
"extra_sources": [

"my_loopers.cpp"
]

}

We added a loopers field, which is an array containing the names of C functions matching the looper type signature.

In my_loopers.cpp:

void incrementMyCounter() {
static int myCounter = 0;
++myCounter;

}

As with the initializer, this isn’t a very functional example, but there much more you could do - you’ll want to look
into the lowest level APIs in the firmware source. Look through the .h files, where most functions are documented.

2.3.6 Ignore Depending on Value

We want to ignore a signal (and not translate it and send over USB/Bluetooth) if the value matches certain critera.
We’ll use a custom decoder as in Custom Transformed Numeric Signal but instead of modifying the value of the
signal, we’ll use the send flag to tell the VI if it should process the value or not.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400,
"decoder": "ourFilteringDecoder"

}
}

}
},
"extra_sources": [

"my_handlers.cpp"
]

}

In my_handlers.cpp:

2.3. Custom Handler Configuration 31

https://github.com/openxc/vi-firmware

OpenXC VI Firmware Documentation, Release 7.0.0

/* Ignore the signal if the value is less than 100 */
float ourFilteringDecoder(CanSignal* signal, CanSignal* signals,

int signalCount, float value, bool* send) {
if(value < 100) {

*send = false;
}
return value;

}

2.4 Writable Configuration Examples

For applications that need to send data back to the vehicle, you can configure a variety of CAN writes: raw CAN
messages, performing reverse translation of an individual CAN signal, or send diagnostic requests.

Most of these examples build on configurations started for reading data from the bus, so you are strongly encouraged
to read, understand and try the read-only configurations before continuing.

• Named Numeric Signal Write Request
• Named Boolean Signal Write Request
• Named State-based Signal Write Request
• Named, Transformed Written Signal
• Composite Write Request

2.4.1 Named Numeric Signal Write Request

We want to send a single numeric value to the VI, and have it translated back into a CAN signal in a message on a
high speed bus attached to controller 1. The signal is 7 bits wide, starting from bit 5 in message ID 0x102. We want
the name of the signal that will be sent to the VI to be my_openxc_measurement.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"writable": true

}
}

}
}

}

This configuration is the same as the read-only example One Bus, One Numeric Signal with the addition of the
writable flag to the signal. When this flag is true, an OpenXC message sent back to the VI from an app with
the name my_openxc_measurement will be translated to a CAN signal in a new message and written to the bus.

32 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

If the VI is configured to use the JSON output format, sending this OpenXC single-valued message to the VI via USB
or UART (Bluetooth) would trigger a CAN write:

{"name": "my_openxc_measurement", "value": 42}

With the tools from the OpenXC Python library you can send that from a terminal with the command:

openxc-control write --name my_openxc_measurement --value 42

and if you compiled the firmware with DEBUG=1, you can view the view the logs to make sure the write went through
with this command:

openxc-control write --name my_openxc_measurement --value 42 --log-mode stderr

2.4.2 Named Boolean Signal Write Request

We want to send a single boolean value to the VI, and have it translated back into a CAN signal in a message on a high
speed bus attached to controller 1. The signal is 1 bits wide, starting from bit 3 in message ID 0x201. We want the
name of the signal that will be sent to the VI to be my_boolean_request.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_boolean_request",
"bit_position": 3,
"bit_size": 1,
"writable": true,
"encoder": "booleanWriter"

}
}

}
}

}

In addition to setting writable to true, We set the encoder for the signal to the built-in booleanWriter. This
will handle converting a true or false value from the user back to a 1 or 0 in the outgoing CAN message.

If the VI is configured to use the JSON output format, sending this OpenXC single-valued message to the VI via USB
or UART (Bluetooth) would trigger a CAN write:

{"name": "my_boolean_request", "value": true}

With the tools from the OpenXC Python library you can send that from a terminal with the command:

openxc-control write --name my_boolean_request --value true

2.4.3 Named State-based Signal Write Request

We want to send a state as a string to the VI, and have it translated back into a numeric CAN signal in a message on a
high speed bus attached to controller 1. As in One Bus, One State-based Signal, the signal is 3 bits wide, starting from

2.4. Writable Configuration Examples 33

https://github.com/openxc/openxc-message-format#single-valued
https://github.com/openxc/openxc-message-format#single-valued

OpenXC VI Firmware Documentation, Release 7.0.0

bit 28 in message ID 0x104. We want the name of the signal for OpenXC app developers to be active_state.
There are 6 valid states from 0-5 in the CAN signal, but we want the app developer to send the strings a through f to
the VI.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_state_request",
"bit_position": 28,
"bit_size": 3,
"states": {

"a": [0],
"b": [1],
"c": [2],
"d": [3],
"e": [4],
"f": [5]

},
"writable": true

}
}

}
}

}

The writable field is all that is required - the signal will be automatically configured to use the built-in
stateWriter as its encoder because the signal has a states array. If a user sends the VI the value c in
a write request with the name my_state_request, it will be encoded as 2 in the CAN signal in the outgoing
message.

If the VI is configured to use the JSON output format, sending this OpenXC single-valued message to the VI via USB
or UART (Bluetooth) would trigger a CAN write:

{"name": "my_state_request", "value": "a"}

With the tools from the OpenXC Python library you can send that from a terminal with the command:

openxc-control write --name my_state_request --value "\"a\""

Becuase of the way string escaping works from the command prompt, you have to add escaped \" characters so the
tool knows you want to send a string.

2.4.4 Named, Transformed Written Signal

We want to write the same signal as Named Numeric Signal Write Request but round any values below 100 down to 0
before sending (similar to the read-only example Custom Transformed Numeric Signal).

To accomplish this, we need to know a little C - we will write a custom signal encoder to make the transformation.
Here’s the JSON configuration:

34 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format#single-valued

OpenXC VI Firmware Documentation, Release 7.0.0

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000

}
},
"messages": {

"0x102": {
"bus": "hs",
"signals": {

"My_Signal": {
"generic_name": "my_openxc_measurement",
"bit_position": 5,
"bit_size": 7,
"factor": -1.0,
"offset": 1400,
"encoder": "ourRoundingWriteEncoder"

}
}

}
},
"extra_sources": [

"my_handlers.cpp"
]

}

We set the encoder for the signal to ourRoundingWriteEncoder, and we’ll define that in a separate file named
my_handlers.cpp. The extra_sources field is also set, meaning that our custom C/C++ code will be included
with the firmware build.

In my_handlers.cpp:

/* Round the value down to 0 if it's less than 100 before writing to CAN. */
uint64_t ourRoundingWriteEncoder(CanSignal* signal, CanSignal* signals,

int signalCount, double value, bool* send) {
if(value < 100) {

value = 0;
}
// encodeSignal pulls the CAN signal definition from the CanSignal struct
// and encodes the value into the right bits of a 64-bit return value.
return encodeSignal(signal, value);

}

Signal encoders are responsible for transforming a float, string or boolean value into a 64-bit integer, to be used in the
outgoing message.

2.4.5 Composite Write Request

When the app developer sends a numeric measurement to the VI, we want to send:

• 1 arbitrary CAN message with the ID 0x34 on a high speed bus connected to controller 1, with the value
0x1234.

• The value sent by the developer encoded into the message ID 0x35 in a signal starting at bit 0, 4 bits wide on
the same high speed bus. We don’t want this value to be writable by the app developer unless a part of these 3
writes combined.

2.4. Writable Configuration Examples 35

OpenXC VI Firmware Documentation, Release 7.0.0

• A boolean signal in the message 0x101 on a medium speed bus connected to controller 2, starting at bit 12 and
1 bit wide. If the numeric value from the user is greater than 100, the boolean value should be true.

{ "name": "passthrough",
"buses": {

"hs": {
"controller": 1,
"raw_writable": true,
"speed": 500000

},
"ms": {

"controller": 2,
"speed": 125000

}
},
"messages": {

"0x35": {
"bus": "hs",
"signals": {

"My_Numeric_Signal": {
"generic_name": "my_number_signal",
"bit_position": 0,
"bit_size": 4

}
}

}
"0x101": {

"bus": "ms",
"signals": {

"My_Other_Signal": {
"generic_name": "my_value_is_over_100_signal",
"bit_position": 12,
"bit_size": 1

}
}

}
},
"commands": [

{"name": "my_command",
"handler": "handleMyCommand"}

],
"extra_sources": [

"my_handlers.cpp"
]

}

We added a commands field, which contains an array of JSON objects with name and handler fields. The name
of the command, my_command is what app developers will send to the VI. The handler is the name of a C++
function will define in one of the files listed in extra_sources.

In the configuration, also note that:

• The raw CAN message that we want to send isn’t included. Since raw_writable is true for the hs bus,
there’s no need to define it in the configuration.

• The my_number_signal signal doesn’t have the writable flag set to true (it’s omitted, and the default
is false). This means an app developer will not be able to send write requests for my_number_signal
directly.

In my_handlers.cpp:

36 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

void handleMyCommand(const char* name, openxc_DynamicField* value,
openxc_DynamicField* event, CanSignal* signals, int signalCount) {

// Look up the numeric and boolean signals we need to send and abort if
// either is missing
CanSignal* numericSignal = lookupSignal("my_number_signal", signals,

signalCount);
CanSignal* booleanSignal = lookupSignal("my_value_is_over_100_signal",

signals, signalCount);
if(numericSignal == NULL || booleanSignal == NULL) {

debug("Unable to find signals, can't send trio");
return;

}

// Build and enqueue the arbitrary CAN message to be sent - note that none
// of the CAN messages we enqueue in the handler will be sent until after
// it returns - interaction with the car via CAN must be asynchronous.
CanMessage message = {0x34, 0x12345};
CanBus* bus = lookupBus(0, getCanBuses(), getCanBusCount());
if(bus != NULL) {

can::write::enqueueMessage(bus, &message);
}

// Send the numeric signal
can::write::encodeAndSendSignal(numericSignal, value,

// the last parameter is true, meaning we want to force sending
// this signal even though it's not marked writable in the
// config
true);

// For the boolean signal, send 'true' if the value sent by the user is
// greater than 100
can::write::encodeAndSendBooleanSignal(booleanSignal, value > 100, true);

}

2.5 Writable Raw CAN Configuration Examples

Writing raw CAN messages to the vehicle’s bus is the lowest level you can get, so please make sure you know what
you’re doing before trying any of these examples. In addition to reading raw CAN messages you can write arbitrary
CAN messages back to the bus.

• Write a CAN messages
• Writing with Filtered CAN

2.5.1 Write a CAN messages

There’s not much to configure for raw CAN writes, since your application is decided what message to build instead of
the VI. The only requirement is that the bus you wish to write on is configured as writable with the raw_writable
flag, otherwise the VI will reject the request to send.

{ "buses": {
"hs": {

2.5. Writable Raw CAN Configuration Examples 37

OpenXC VI Firmware Documentation, Release 7.0.0

"controller": 1,
"speed": 500000,
"raw_writable": true

}
}

}

With this configuration, you can send a CAN message write request to the VI using the OpenXC raw CAN message
format (via any of the I/O interfaces) and it will send it out to the bus. For example, when using the JSON output
format, sending this to the VI:

{"bus": 1, "id": 1234, "value": "0x12345678"}

would cause it to write a CAN message with the arbitration ID 1234 and the payload 0x12345678 to the bus attached
to the first CAN controller.

With the tools from the OpenXC Python library you can send that from a terminal with the command:

openxc-control write --bus 1 --id 1234 ---data 0x12345678

and if you compiled the firmware with DEBUG=1, you can view the view the logs to make sure the write went through
with this command:

openxc-control write --bus 1 --id 1234 ---data 0x12345678 --log-mode stderr

2.5.2 Writing with Filtered CAN

It’s also possible to write arbitrary CAN messages with you are using filtered raw CAN reads. Your write requests
aren’t restricted to the filtered set, simply add the raw_writable flag and you can send any message.

{ "buses": {
"hs": {

"controller": 1,
"speed": 500000,
"raw_can_mode": "filtered",
"raw_writable": true

}
},
"messages": {

"0x21": {
"bus": "hs"

}
}

}

The rest is the same as in the unfiltered write example.

2.6 Diagnostic Configuration Examples

The firmware configuration examples shown so far are for so-called “normal mode” CAN messages, that are sent and
received without any formal request by a node on the bus. Diagnostic type messages use a request / response style
protocol, and are also supported by the VI firmware. You can add pre-defined, diagnostic recurring requests to a VI
config file (e.g. request the engine RPM once per second).

To perform a one-time request, you don’t need anything special in the configuration - just use a diagnostic request
command.

38 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format#raw-can-message-format
https://github.com/openxc/openxc-message-format#raw-can-message-format

OpenXC VI Firmware Documentation, Release 7.0.0

• Recurring Simple Diagnostic PID Request
• Recurring Parsed OBD-II PID Request
• Recurring Named Diagnostic PID Request
• On-Demand Request from Command Handler

2.6.1 Recurring Simple Diagnostic PID Request

We want to send a request for a mode 0x22 PID once per second and publish the full details of the response out as an
OpenXC message.

{ "buses": {
"hs": {

"controller": 1,
"raw_writable": true,
"speed": 500000

}
},
"diagnostic_messages": [

{
"bus": "hs",
"id": 2015,
"mode": 34,
"pid": 42,
"frequency": 1

}
]

}

We added a diagnostic_messages array and one diagnostic request object in that array. The id, mode, and
frequency are the only required fields, and we added a pid to this as well.

It’s also important that the CAN controller is configured as writable with the raw_writable flag, otherwise the VI
will not be able to send the diagnostic request.

With this configuration, the VI will publish the diagnostic response received from the bus using the OpenXC diagnostic
response message format, e.g. when using the JSON output format:

{"bus": 1,
"id": 2016,
"mode": 34,
"pid": 42,
"success": true,
"payload": "0x1234"}

Note that the id of the response is different from the request, because we sent the request to the functional broadcast
address 0x7df. If you use a physical address with your request, the ID of the response will match. The bus is also
different from that specified in the mapping - it’s the controller ID, not the name of the bus.

2.6.2 Recurring Parsed OBD-II PID Request

We want to send a request for the OBD-II PID for engine RPM once per second, and publish the full details of the
response out as an OpenXC message. We want to use a decoder to parse the response’s payload to get the actual engine
RPM value.

2.6. Diagnostic Configuration Examples 39

https://github.com/openxc/openxc-message-format#responses
https://github.com/openxc/openxc-message-format#responses

OpenXC VI Firmware Documentation, Release 7.0.0

{ "buses": {
"hs": {

"controller": 1,
"raw_writable": true,
"speed": 500000

}
},
"diagnostic_messages": [

{
"bus": "hs",
"id": 2015,
"mode": 1,
"pid": 12,
"frequency": 1,
"decoder": "handleObd2Pid"

}
]

}

Besides changing the mode and pid, we added a decoder. The handleObd2Pid decoder is included by default
in the vi-firmware repository, and knows how to decode a number of the most interesting and widely implemented
OBD-II PIDs.

With this configuration, the VI will publish the diagnostic response received from the bus using the OpenXC diagnostic
response message format, e.g. when using the JSON output format:

{"bus": 1,
"id": 2016,
"mode": 34,
"pid": 42,
"success": true,
"payload": "0x1234"}

Unlike the configuration example without a decoder, this response has a value instead of the raw payload. The
value is whatever your decoder function returns.

2.6.3 Recurring Named Diagnostic PID Request

Just like before, we want to request the OBD-II PID for engine RPM once per second, but this time we don’t care
about returning the full details in the response message. We just want a named message like an OpenXC simple
vehicle message.

{ "buses": {
"hs": {

"controller": 1,
"raw_writable": true,
"speed": 500000

}
},
"diagnostic_messages": [

{
"bus": "hs",
"id": 2015,
"mode": 1,
"pid": 12,
"frequency": 1,
"decoder": "handleObd2Pid",

40 Chapter 2. Firmware Configuration

https://github.com/openxc/openxc-message-format#responses
https://github.com/openxc/openxc-message-format#responses

OpenXC VI Firmware Documentation, Release 7.0.0

"name": "engine_speed"
}

]
}

We simply added a name field to the diagnostic message configuration. This will change the output format to the
OpenXC simple vehicle message format, e.g. when using the JSON output format:

{"name": "engine_speed", "value": 45}

where value is the return value from the decoder.

2.6.4 On-Demand Request from Command Handler

You can generate a new recurring or one-off diagnostic request from any custom command handler signal decoder, or
CAN message handler. Take a look at the diagnostics.h module for functions that may be useful.

For this example, we want to generate a mode 3 diagnostic request to get trouble codes when a “collect_trouble_codes”
command is sent. We will register a callback function to handle the payload of the response to parse out the trouble
code we are looking for. Here’s our VI config:

{ "buses": {
"hs": {

"controller": 1,
"raw_writable": true,
"speed": 500000

}
},
"commands": [

{"name": "collect_trouble_codes",
"handler": "collectTroubleCodes"}

],
"extra_sources": [

"my_handlers.cpp"
]

}

Just as in the Composite Write Request, we added a commands field with one custom command, mapping
collect_trouble_codes to the command handler function collectTroubleCodes (to be defined in
my_handlers.cpp).

In my_handlers.cpp:

void handleTroubleCodeResponse(
DiagnosticsManager* manager,
const ActiveDiagnosticRequest* request,
const DiagnosticResponse* response,
float parsed_payload) {

// Received a response to our mode 3 request

// response->payload is an array (with length response->payload_length)
// that contains the trouble code data - do whatever you need to do to parse
// out your trouble codes.

// If you need to send anything out on the I/O interfaces (e.g. to let
// a client know about a particular trouble code), you can use the
// openxc::pipeline::publish(...) function.

}

2.6. Diagnostic Configuration Examples 41

https://github.com/openxc/openxc-message-format/blob/next/JSON.mkd#simple-vehicle-message

OpenXC VI Firmware Documentation, Release 7.0.0

void handleMyCommand(const char* name, openxc_DynamicField* value,
openxc_DynamicField* event, CanSignal* signals, int signalCount) {

// Build and broadcast a non-recurring mode 3 diagnostic request
DiagnosticRequest request = {

arbitration_id: 0x7df,
mode: 3

};

addRequest(&getConfiguration()->diagnosticsManager,
// use the CAN bus on controller 0 (this is a little bit dangerous,
// you'll want to do some error checking to amke sure this bus exists.
getCanBuses()[0],
&request,
NULL, // no human readable name
false, // don't wait for multiple responses
NULL, // no response decoder
handleTroubleCodeResponse); // when a response is received, call our handler

}

This combination of a command handler and diagnostic response callback requests trouble codes from the vehicle
whenever the command is received, and can take any action on the response (in the callback.

2.7 Bit Numbering and Byte Order

When dealing with binary data like CAN messages, there are two important details - byte order and bit numbering.

Byte order, or endianness <http://en.wikipedia.org/wiki/Endianness>, determines the convention used to interpret a
sequence of bytes as a number. Given 4 bytes of data, e.g. 0x01 02 03 04, the endianness determines which byte
is the “zero-th” byte and which is the last. There are only two options: big endian (a.k.a. Motorola order) and little
endian (Intel order). Big endian is most common in automotive networks.

Bit numbering is an automotive specific term and must less standardized. The bit numbering can be what we will call
normal or inverted. This doesn’t change the actual data representation (like a different byte order would) but it changes
how you refer to different bit positions for CAN signals.

The vehicle interface C++ source assumes the number of the highest order bit of a 64-bit CAN message is 0, and the
numbering continuous left to right:

Hex: 0x83 46
Binary: 10000011 01000110
Bit pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...etc.

The most commonly used format in the industry, DBC files from Vector’s software, use an inverted numbering by
default when viewed in CANdb++, for example. In each byte of a CAN message, they start counting bits from the
rightmost bit, e.g.:

Hex: 0x83 46
Binary: 10000011 01000110
Bit pos: 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 ...etc.

You can control the bit numbering with the bit_numbering_inverted flag on a message set or message (where
the property will cascade down to all signals) or an individual signal in a VI configuration file. By default the VI
assumes normal bit ordering for each signal unless you are using a database-backed mapping - the DBC files we’ve
seen so far have all stored signal information in the inverted format.

42 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

2.8 All Configuration Options Reference

There are many configuration options - we recommend looking for your use case in the list of read or write to find a
starting point, and refer to this section as a reference on particular configuration options.

The root level JSON object maps CAN bus addresses to CAN bus objects, CAN message IDs to CAN message objects
in each bus, and CAN signal name to signal object within each message. Other top-level sections are available to list
one-time initialization functions and to list arbitrary functions that should be added to the main loop.

In all cases when we refer to a “path,” either an absolute or relative path will work. If you use relative paths, however,
they must be relative to the root of wherever you run the build scripts.

Once you’ve defined your message set in a JSON file, run the openxc-generate-firmware-code tool from
the OpenXC Python library to create an implementation of signals.cpp:

vi-firmware/ $ openxc-generate-firmware-code --message-set mycar.json > src/signals.cpp

• Message Set
• Parent Message Sets
• Initializers
• Loopers
• CAN Buses
• CAN Messages
• Diagnostic Messages
• Mappings
• Extra Sources
• Commands

2.8.1 Message Set

Each JSON mapping file defines a “message set,” and it should have a name. Typically this identifies a particular
model year vehicle, or possibly a broader vehicle platform. The name field is required.

bit_numbering_inverted (optional) This flag controls the default bit numbering for all messages included in
this message set. You can override the bit numbering for any particular message or mapping, too.

false by default, true by default for database-backed mappings.

max_message_frequency Set a default value for all buses for this attribute - see the Can Buses section for a
description.

raw_can_mode Set a default value for all buses for this attribute - see the Can Buses section for a description.

2.8.2 Parent Message Sets

Message sets are composable - you can extend a set by adding a path to the parent(s) to the parents key.

2.8.3 Initializers

The key initializers should have as its value an array of strings. Each string should be the name of a function
with the type signature:

2.8. All Configuration Options Reference 43

http://python.openxcplatform.com

OpenXC VI Firmware Documentation, Release 7.0.0

void function();

These functions will be called once at the beginning of execution, before reading any CAN messages.

2.8.4 Loopers

The key loopers should have as its value an array of strings. Each string should be the name of a function with the
type signature:

void function();

These functions will be called once each time through the main loop function, after reading and processing any CAN
messages.

2.8.5 CAN Buses

The key busesmust be an object, where each field is a CAN bus uses by this message set, and which CAN controllers
are attached on the microcontroller. The

controller The integer ID of the CAN controller to which this bus is attached. The platforms we are using now
only have 2 CAN controllers, identified here by 1 and 2 - these are the only acceptable bus addresses. If this
field is not defined, the bus and any messages associated with it will be ignored (but it won’t cause an error, so
you can swap between buses very quickly).

speed The CAN bus speed in Kbps, most often 125000 or 500000.

raw_can_mode Controls sending raw CAN messages (encoded as JSON objects) from the bus over the output
channel. Valid modes are off (the default if you don’t specify this attribute), filtered (if messages are
defined for the bus, will enable CAN filters and only transmit those messages), or unfiltered (disable
acceptance filters and send all received CAN messages). If this attribute is set on a CAN bus object, it will
override any default set at the message set level (e.g. you can have all buses configured to send filtered raw
CAN messages, but override one to send unfiltered).

raw_writable Controls whether or not raw CAN messages from the user can be written back to this bus, without
any sort of translation. This is false by default. Even when this is false, messages may still be written to the bus
if a signal is configured as writable, but they will translated from the user’s input first.

max_message_frequency The default maximum frequency for all CAN messages when using the raw
passthrough mode. To put no limit on the frequency, set this to 0 or leave it out. If this attribute is set on
a CAN bus object, it will override any default set at the message set level. This value cascades to all CAN
message objects for their max_frequency attribute, which can also be overridden at the message level.

force_send_changed (optional) Meant to be used in conjunction with max_message_frequency, if this is
true a raw CAN message will be sent regardless of the given frequency if the value has changed (when using
raw CAN passthrough). Setting the value here, on the CAN bus object, will cascade down to all CAN messages
unless overridden. Defaults to true.

2.8.6 CAN Messages

The messages key is a object with fields mapping from CAN message IDs to signal definitions. The fields must be
hex IDs of CAN messages as strings (e.g. 0x90).

44 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

Message

The attributes of each message object are:

bus The name of one of the previously defined CAN buses where this message can be found.

bit_numbering_inverted (optional) This flag controls the default bit numbering for the signals in this mes-
sage. Defaults to the value of the mapping, then default of the message set.

signals A list of CAN signal objects (described in the Signal section) that are in this message, with the name of the
signal as the key. If this is a database-backed mappping, this value must match the signal name in the database
exactly - otherwise, it’s an arbitrary name.

name (optional) The name of the CAN message - this is not required and has no meaning in code, it can just be
handy to be able to refer back to an original CAN message definition in another document.

handlers (optional) An array of names of functions that will be compiled with the firmware and should be applied
to the entire raw message value (see Message Handlers).

enabled (optional) Enable or disable all processing of a CAN message. By default, a message is enabled. If this
flag is false, the CAN message and all its signals will be left out of the generated source code. Defaults to true.

max_frequency (optional) If sending raw CAN messages to the output interfaces, this controls the maximum
frequency (in Hz) that the message will be process and let through. The default value (0) means that all messages
will be processed, and there is no limit imposed by the firmware. If you want to make sure you don’t miss a
change in value even when rate limiting, see the force_send_changed attribute. Defaults to 0 (no limit).

max_signal_frequency (optional) Setting the max signal frequency at the message level will cascade down to
all of the signals within the message (unless overridden). The default value (0) means that all signals will be
processed, and there is no limit imposed by the firmware. See the max_frequency flag documentation for
the signal mapping for more information. If you want to make sure you don’t miss a change in value even when
rate limiting, see the force_send_changed_signals attribute. Defaults to 0 (no limit).

force_send_changed (optional) Meant to be used in conjunction with max_frequency, if this is true a raw
CAN message will be sent regardless of the given frequency if the value has changed (when using raw CAN
passthrough). Defaults to true.

force_send_changed_signals Setting this value on a message will cascade down to all of the signals within
the message (unless overridden). See the force_send_changed flag documentation for the signal mapping
for more information. Defaults to false.

Message Handlers

If you need additional control, you can provide custom handlers for the entire message to combine multiple signals
into a single value (or any other arbitrary processing). You can generate 0, 1 or many translated messages from each
call to a custom handler function.

void handleSteeringWheelMessage(int messageId, uint64_t data,
CanSignal* signals, int signalCount, Pipeline* pipeline);

float steeringWheelAngle = decodeCanSignal(&signals[1], data);
float steeringWheelSign = decodeCanSignal(&signals[2], data);

float finalValue = steeringWheelAngle;
if(steeringWheelSign == 0) {

// left turn
finalValue *= -1;

}

char* message = generateJson(signals[1], finalValue);

2.8. All Configuration Options Reference 45

OpenXC VI Firmware Documentation, Release 7.0.0

sendMessage(usbDevice, (uint64_t*) message, strlen(message));
}

Using a custom message handler will not automatically stop the normal translation workflow for individual signals.
To mute them (but still store their values in signal->lastvalue), specify ignoreHandler as the handler.
This is not done by default because not every signal in a message is always handled by a message handler.

Signal

The attributes of a signal object within a message are:

generic_name The name of the associated generic signal name (from the OpenXC specification) that this should
be translated to. Optional - if not specified, the signal is read and stored in memory, but not sent to the output
bus. This is handy for combining the value of multiple signals into a composite measurement such as steering
wheel angle with its sign.

bit_position The starting bit position of this signal within the message. Required unless this is a database-backed
mapping.

bit_size The width in bits of the signal. Required unless this is a database-backed mapping.

factor The signal value is multiplied by this if set. Required unless this is a database-backed mapping.

offset This is added to the signal value if set. Required unless this is a database-backed mapping.

decoder (optional) The name of a function that will be compiled with the firmware and should be applied to the
signal’s value after the normal translation. See the Signal Decoder section for details.

ignore (optional) Setting this to true on a signal will silence output of the signal. The VI will not monitor the
signal nor store any of its values. This is useful if you are using a custom decoder for an entire message, want
to silence the normal output of the signals it handles, and you don’t need the VI to keep track of the values of
any of the signals separately (in the lastValue field). If you need to use the previously stored values of any
of the signals, you can use the ignoreDecoder as the decoder for the signal. Defaults to false.

enabled (optional) Enable or disable all processing of a CAN signal. By default, a signal is enabled; if this flag is
false, the signal will be left out of the generated source code. Defaults to true.

The difference between ignore, enabled and using an ignoreDecoder can be confusing. To summarize the
difference:

• The enabled flag is the master control switch for a signal - when this is false, the signal (or message, or
mapping) will not be included in the firmware at all. A common time to use this is if you want to have one
configuration file with many options, only a few of which are enabled in any particular build.

• The ignore flag will not exclude a signal from the firmware, but it will not include it in the normal message
processing pipeline. The most common use case is when you need to reference the bit field information for the
signal from a custom decoder.

• Finally, use the ignoreDecoder for your signal’s decoder to both include it in the firmware and handle it
during the normal message processing pipeline, but just silence its output. This is useful if you need to track the
last known value for this signal for a calculation in a custom decoder.

states This is a mapping between the desired descriptive states (e.g. off) and the corresponding numerical values
from the CAN message (usually an integer). The raw values are specified as a list to accommodate multiple
raw states being coalesced into a single final state (e.g. key off and key removed both mapping to just “off”).
Required unless this is a database-backed mapping.

max_frequency (optional) Some CAN signals are sent at a very high frequency, likely more often than will ever
be useful to an application. This attribute sets the maximum frequency (Hz) that the signal will be processed
and let through. The default value (0) means that all values will be processed, and there is no limit imposed by

46 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

the firmware. If you want to make sure you don’t miss a change in value even when dropping messages, see
the force_send_changed attribute. You probably don’t want to combine this attribute with send_same
or else you risk missing a status change message if wasn’t one of the messages the VI decided to let through.
Defauls to 0 (no limit).

send_same (optional) By default, all signals are translated every time they are received from the CAN bus. By
setting this to false, you can force a signal to be sent only if the value has actually changed. This works best
with boolean and state based signals. Defaults to true.

force_send_changed (optional) Meant to be used in conjunction with max_frequency, if this is true a signal
will be sent regardless of the given frequency if the value has changed. This is useful for state-based and boolean
states, where the state change is the most important thing and you don’t want that message to be dropped.
Defaults to false.

writable (optional) Set this attribute to true to allow this signal to be written back to the CAN bus by an applica-
tion. OpenXC JSON-formatted messages sent back to the VI that are writable are translated back into raw CAN
messages and written to the bus. By default, the value will be interpreted as a floating point number. Defaults to
false.

encoder (optional) If the signal is writable and is not a plain floating point number (i.e. it is a boolean or state
value), you can specify a custom function here to encode the value for a CAN messages. This is only necessary
for boolean types at the moment - if your signal has states defined, we assume you need to encode a string state
value back to its original numerical value. Defaults to a built-in numerical encoder.

Signal Decoder

The default decoder for each signal is a simple passthrough, translating the signal’s value from engineering units to
something more usable (using the defined factor and offset). Some signals require additional processing that you may
wish to do within the VI and not on the host device. Other signals may need to be combined to make a composite
signal that’s more meaningful to developers.

An good example is steering wheel angle. For an app developer to get a value that ranges from e.g. -350 to +350, we
need to combine two different signals - the angle and the sign. If you want to make this combination happen inside
the VI, you can use a custom decoder.

You may also need a custom decoder to return a value of a type other than float. A decoder is provided for dealing
with boolean values, the booleanDecoder - if you specify that as your signal’s decoder the resulting JSON will
contain true for 1.0 and false for 0.0. There is also a stateDecoder for translating integer state values to string
names.

For this example, we want to modify the value of steering_wheel_angle by setting the sign positive or negative
based on the value of the other signal (steering_angle_sign). Every time a CAN signal is received, the new
value is stored in memory. Our custom decoder decodeSteeringWheelAngle will use that to adjust the raw
steering wheel angle value. Modify the input JSON file to set the decoder attribute for the steering wheel angle
signal to decodeSteeringWheelAngle.

Add this to the top of signals.cpp (or if using the mapping file, add it to a separate .cpp file and then add that
filename to the extra_sources field):

openxc_DynamicField decodeSteeringWheelAngle(CanSignal* signal,
CanSignal* signals, int signalCount,
openxc::pipeline::Pipeline* pipeline,
float value, bool* send) {

if(signal->lastValue == 0) {
// left turn
value *= -1;

}

2.8. All Configuration Options Reference 47

OpenXC VI Firmware Documentation, Release 7.0.0

return openxc::payload::wrapNumber(value);
}

The function declaration of a custom decoder must match:

openxc_DynamicField customDecoder(CanSignal* signal, CanSignal* signals,
int signalCount, openxc::pipeline::Pipeline* pipeline,

float value, bool* send);

where signal is a pointer to the CanSignal this is handling, signals is an array of all signals, value is the
raw value from CAN and send is a flag to indicate if this should be sent over USB.

The bool* send parameter is a pointer to a bool you can flip to false if this signal value need not be sent over
USB. This can be useful if you don’t want to keep notifying the same status over and over again, but only in the event
of a change in value (you can use the lastValue field on the CanSignal object to determine if this is true). It’s also
good practice to inspect the value of send when your custom decoder is called - the normal translation workflow may
have decided the data shouldn’t be sent (e.g. the value hasn’t changed and sendSame == false). Decoders are
called every time a signal is received, even if send == false, so that you have the flexibility to implement custom
processing that depends on receiving every data point.

A known issue with this method is that there is no guarantee that the last value of another signal arrived in the message
or before/after the value you’re current modifying. For steering wheel angle, that’s probably OK - for other signals,
not so much.

2.8.7 Diagnostic Messages

The diagnostic_messages key is an array of objects describing a recurring diagnostic message request.

Diagnostic Message

The attributes of each diagnostic message object are:

bus The name of one of the previously defined CAN buses where this message should be requested.

id the arbitration ID for the request.

mode The diagnostic request mode, e.g. Mode 1 for powertrain diagnostic requests.

frequency The frequency in Hz to request this diagnostic message. The maximum allowed frequency is 10Hz.

pid (optional) If the mode uses PIDs, the pid to request.

name (optional) A human readable, string name for this request. If provided, the response will have a name field
(much like a normal translated message) with this value in place of bus, id, mode and pid.

decoder (optional) When using a name, you can also specify a custom decoder function to parse the payload.
This field is the name of a function (that matches the DiagnosticResponseDecoder function prototype).
When a decoder is specified, the decoded value will be returned in the value field in place of payload.

callback (optional) This field is the name of a function (that matches the DiagnosticResponseCallback
function prototype) that should be called every time a response is received to this request.

2.8.8 Mappings

The mappings field is an optional field allows you to move the definitions from the messages list to separate files
for improved composability and readability.

48 Chapter 2. Firmware Configuration

OpenXC VI Firmware Documentation, Release 7.0.0

For an detailed explanation of mapped message sets, see the example of a message set using mappings, see the Separate
Files for Message Sets configuration example.

The mappings field must be a list of JSON objects with:

mapping - A path to a JSON file containing a single object with the key messages, containing objects formatted
as the CAN Messages section describes. In short, you can pull out the messages key from the main file and
throw it into a separate file and link it in here. You can also do the same with a diagnostic_messages
field containing Diagnostic Messages.

bus (optional) The name of one of the defined CAN buses where these messages can be found - this value will be set
for all of the messages contained the mapping file, but can be overridden by setting bus again in an individual
message.

database (optional) A path to a CAN message database associated with these mappings. Right now, XML ex-
ported from Vector CANdb++ is supported. If this is defined, you can leave the bit position, bit size, factor,
offset, max and min values out of the mapping file - they will be picked up automatically from the database.

bit_numbering_inverted (optional) This flag controls the default bit numbering for the messages contained
in this mapping. Messages in the mapping can override the bit numbering by explicitly specifying their own
value for this flag. Defaults to the value of the message set, or true if this mapping is database-backed.

enabled (optional) Enable or disable all processing of the CAN messages in a mapping. By default, a mapping is
enabled; if this flag is false, all CAN message and signals from the mapping will be excluded from the generated
source code. Defaults to true.

2.8.9 Extra Sources

The extra_sources key is an optional list of C++ source files that should be injected into the generated
signals.cpp file. These may include signal decoders, message handlers, initializers or custom loopers.

2.8.10 Commands

The commands field is a mapping of arbitrary command names to functions that should be called to run arbitrary
code in the VI on-demand (e.g. sending multiple CAN signals at once). The value of this attribute is a list of objects
with these attributes:

name The name of the command to be recognized on the OpenXC translated interface.

enabled (optional) Enable or disable all processing of a command. By default, a command is enabled. If this flag
is false, the command will be excluded from the generated source code. Defaults to true.

handler The name of a custom command handler function (that matches the CommandHandler function proto-
type from canutil.h) that should be called when the named command arrives over the translated VI interface
(e.g. USB or Bluetooth).

void (*CommandHandler)(const char* name, openxc_DynamicField* value,
openxc_DynamicField* event, CanSignal* signals, int signalCount);

Any message received from the USB host with that given command name will be passed to your handler. This is
useful for situations where there isn’t a 1 to 1 mapping between OpenXC command and CAN signal, e.g. if the left
and right turn signal are split into two signals instead of the 1 state-based signal used by OpenXC. You can use the
sendCanSignal function in canwrite.h to do the actual data sending on the CAN bus.

2.8. All Configuration Options Reference 49

OpenXC VI Firmware Documentation, Release 7.0.0

2.9 FAQ

While building custom firmware, if you find yourself thinking:

• “I need to run some code in the main loop, regardless of any CAN signals.” - use a Looper Function.

• “I need to run initialization code at startup.” User an Initializer Function.

• “I need to do some extra processing on a CAN signal before sending it out.” Use a custom signal decoder.

• “I need to combine the value of multiple signals in a message to generate a value.” Use a message handler.

• “I need to send less data.” Control the send frequency.

• “I don’t want this signal to send unless it changes.” Configure it to Send Signal on Change Only.

50 Chapter 2. Firmware Configuration

CHAPTER 3

Compiling

For a detailed walkthrough, see Getting Started.

The VI firmware can be compiled natively in Linux and Mac OS X. In Windows, you can use the included virtual
machine configuration (which uses [Vagrant](http://www.vagrantup.com/). Cygwin is unnoficially supported, and is
no longer recommended.

When compiling you need to specify which embedded VI platform you are compiling for with the PLATFORM flag.
All other flags are optional.

3.1 Example Build Configurations

There are many Makefile Options, so it may be difficult to tell which you need to configure to get a working build.
This page collects a few examples of popular configurations, many of which have shortcuts that can be run with fab
at the command line, without remembering all of the configuration options.

• Default Build
• Automatic Recurring OBD-II Requests Build
• Emulated Data Build
• Fabric Shortcuts

3.1.1 Default Build

You must always specify your target platform with the PLATFORM environment variable. For this example, we’ll set
PLATFORM=FORDBOARD.

By default, if you just run make with no other environment variables set, the firmware is built with these options. This
is a good build to use if you want to send diagnostic requests through a VI:

$ make
<...snip lots of output...>
Compiled with options:
- FORDBOARD = PLATFORM
- 1 = BOOTLOADER
- 0 = DEBUG
- 0 = DEFAULT_METRICS_STATUS
- 1 = DEFAULT_ALLOW_RAW_WRITE_USB
- 0 = DEFAULT_ALLOW_RAW_WRITE_UART
- 0 = DEFAULT_ALLOW_RAW_WRITE_NETWORK

51

http://www.vagrantup.com/

OpenXC VI Firmware Documentation, Release 7.0.0

- USB = DEFAULT_LOGGING_OUTPUT
- JSON = DEFAULT_OUTPUT_FORMAT
- 0 = DEFAULT_EMULATED_DATA_STATUS
- SILENT_CAN= DEFAULT_POWER_MANAGEMENT
- 0x1 = DEFAULT_USB_PRODUCT_ID
- 0 = DEFAULT_CAN_ACK_STATUS
- 1 = DEFAULT_OBD2_BUS
- 0 = DEFAULT_RECURRING_OBD2_REQUESTS_STATUS

The Makefile will always print the configuration used so you can double check.

• This default configuration will run on a Ford reference VI <http://vi.openxcplatform.com/> (PLATFORM is
FORDBOARD) running the pre-loaded bootloader (BOOTLOADER is 1).

• Debug mode is off (DEBUG is 0) so no log messages will be output via USB for maximum performance.

• If the VI configuration allows raw CAN writes, they will only be permitted if set via USB
(DEFAULT_ALLOW_RAW_WRITE_USB is 1 but the *_UART and *_NETWORK versions are 0.

• The data sent from the VI will be serialized to JSON in the format defined by the OpenXC message format
<https://github.com/openxc/openxc-message-format>.

• The VI will go into sleep mode only when no CAN bus activity is detected for a few seconds (the
DEFAULT_POWER_MANAGEMENT mode is SILENT_CAN).

• The CAN controllers will be initialized as listen only unless the VI configuration explicitly states they are
writable (DEFAULT_CAN_ACK_STATUS is 1). This means that the VI may not work in a bench testing setup
where nothing else on the bus is ACKing.

Note: There’s a shortcut for this default build, using the Fabric tool and an included script. This will build the default
build for the reference VI platform:

fab reference build

and for the CrossChasm C5:

fab c5 build

and finally, for the chipKIT Max32:

fab chipkit build

Get the idea? These shortcuts will make sure the flags are set to their defaults, regardless of what you may have in
your current shell environment.

3.1.2 Automatic Recurring OBD-II Requests Build

Another common build is one that automatically queries the vehicle to check if it supports a pre-defined set (see the
file obd2.cpp) of interesting OBD-II parameters, and if so, sets up recurring requests for them. Compile with these
options:

$ export DEFAULT_RECURRING_OBD2_REQUESTS_STATUS=1
$ export DEFAULT_POWER_MANAGEMENT=OBD2_IGNITION_CHECK
$ make
<...snip lots of output...>

Compiled with options:
- FORDBOARD = PLATFORM
- 1 = BOOTLOADER

52 Chapter 3. Compiling

OpenXC VI Firmware Documentation, Release 7.0.0

- 0 = DEBUG
- 0 = DEFAULT_METRICS_STATUS
- 1 = DEFAULT_ALLOW_RAW_WRITE_USB
- 0 = DEFAULT_ALLOW_RAW_WRITE_UART
- 0 = DEFAULT_ALLOW_RAW_WRITE_NETWORK
- USB = DEFAULT_LOGGING_OUTPUT
- JSON = DEFAULT_OUTPUT_FORMAT
- 0 = DEFAULT_EMULATED_DATA_STATUS
- OBD2_IGNIT= DEFAULT_POWER_MANAGEMENT
- 0x1 = DEFAULT_USB_PRODUCT_ID
- 0 = DEFAULT_CAN_ACK_STATUS
- 1 = DEFAULT_OBD2_BUS
- 1 = DEFAULT_RECURRING_OBD2_REQUESTS_STATUS

Notice we changed:

• DEFAULT_RECURRING_OBD2_REQUESTS_STATUS to 1. This enables the automatic OBD-II queries.

• DEFAULT_POWER_MANAGEMENT to OBD2_IGNITION_CHECK (the Makefile summary display truncates
this value). This changes the power management mode to actively probe the vehicle for the engine and vehicle
speed. Some vehicles will keep modules alive if anyone is making diagnostic requests (e.g. the VI), and we
want to avoid that because it could drain the car’s battery. This mode actively infers if the ignition is on and
stops sending diagnostic queries if we think the car is off. The combination of an engine and vehicle speed
check should be compatible with hybrid vehicles.

Note: This build also has a shortcut using the Fabric script. Just add the keyword translated_obd2 before
build in your call to fab at the command line. For example, this compiles for the reference VI with the automatic
recurring, translated OBD2 requests:

fab reference translated_obd2 build

3.1.3 Emulated Data Build

If you want to test connectivity to a VI from your client device without going to a vehicle, but you don’t care about
the actual vehicle data being generated, you can compile a build that generates random vehicle data and sends it via
the normal I/O interfaces.

If you are building an app, you’ll want to use a trace file <http://openxcplatform.com/resources/traces.html> or the
vehicle simulator <https://github.com/openxc/openxc-vehicle-simulator>.

The config a VI to emulate a vehicle:

$ export DEFAULT_EMULATED_DATA_STATUS=1
$ export DEFAULT_POWER_MANAGEMENT=ALWAYS_ON
$ make
<...snip lots of output...>

Compiled with options:
- FORDBOARD = PLATFORM
- 1 = BOOTLOADER
- 0 = DEBUG
- 0 = DEFAULT_METRICS_STATUS
- 1 = DEFAULT_ALLOW_RAW_WRITE_USB
- 0 = DEFAULT_ALLOW_RAW_WRITE_UART
- 0 = DEFAULT_ALLOW_RAW_WRITE_NETWORK
- USB = DEFAULT_LOGGING_OUTPUT
- JSON = DEFAULT_OUTPUT_FORMAT

3.1. Example Build Configurations 53

OpenXC VI Firmware Documentation, Release 7.0.0

- 0 = DEFAULT_EMULATED_DATA_STATUS
- OBD2_IGNIT= DEFAULT_POWER_MANAGEMENT
- 0x1 = DEFAULT_USB_PRODUCT_ID
- 0 = DEFAULT_CAN_ACK_STATUS
- 1 = DEFAULT_OBD2_BUS
- 1 = DEFAULT_RECURRING_OBD2_REQUESTS_STATUS

There are 2 changes from the default build:

• DEFAULT_EMULATED_DATA_STATUS is 1, which will cause fake data to be generated and published from
the VI.

• DEFAULT_POWER_MANAGEMENT is ALWAYS_ON, so the VI will not go to sleep while plugged in. Make sure
to clear this configuration option before making a build to run in a vehicle, or you could drain the battery!

Note: This build also has a shortcut using the Fabric script. Just add the keyword emulator before build in your
call to fab at the command line. For example, this compiles for the reference VI with emulatded data:

fab reference emulator build

3.1.4 Fabric Shortcuts

The repository includes a fabfile.py script, which works with the Fabric commmand line utility to simplify
some of these build configurations. The fab commands are composable, following this simple formula:

• Start your command with fab

• Specify the target platform with chipkit, c5, or reference.

• Optionally include emulator or translated_obd2 to enable one of the example builds described above.

• End with build to start the compilation.

For example, this builds the firmware for a chipKIT and includes emulated data:

fab chipkit emulator build

while this builds the default firmware, ready for OBD2 requests for the chipKIT:

fab chipkit build

The fab commands can be run from any folder in the vi-firmware repository.

3.2 Makefile Options

These options are passed as shell environment variables to the Makefile, e.g.

$ PLATFORM=FORDBOARD make

Note: Try adding the -j4 flag to your calls to make to build 4 jobs in parallel - the speedup can be quite dramatic.

Note: Don’t miss the Fabric helper scripts for the most common build configurations.

PLATFORM Select the target microcontroller platform.

Values: FORDBOARD, CHIPKIT, CROSSCHASM_C5, BLUEBOARD

54 Chapter 3. Compiling

OpenXC VI Firmware Documentation, Release 7.0.0

Default: CHIPKIT

DEBUG Set to 1 to compile with debugging symbols and to enable debug logging. By default the logging will be
available via the logging USB endpoint - for UART output, see the DEFAULT_LOGGING_OUTPUT flag. This
also forces DEFAULT_POWER_MANAGEMENT=ALWAYS_ON and DEFAULT_CAN_ACK_STATUS=1.

Values: 0 or 1

Default: 0

BOOTLOADER By default, the firmware is built to run on a microcontroller with a bootloader (if one is available for
the selected platform), allowing you to update the firmware without specialized hardware. If you want to build
to run on bare-metal hardware (i.e. start at the top of flash memory) set this to 0.

Values: 0 or 1

Default: 1

TRANSMITTER Set this to 1 to force DEFAULT_POWER_MANAGEMENT=ALWAYS_ON and
DEFAULT_USB_PRODUCT_ID=0x2. This is useful if you are using the VI as a transmitter in a local
CAN bus for bench testing. You can address it separately from a receiving VI because of the different USB
product ID.

Values: 0 or 1

Default: 0

DEFAULT_LOGGING_OUTPUT When combined with DEBUG, controls the output interface used for debug logging.
See the platform docs for details on how to read this output.

Values: OFF, USB, UART or BOTH

Default: USB

DEFAULT_METRICS_STATUS Set to 1 to enable logging CAN message and output message statistics over the
normal DEBUG output.

Values: 0 or 1

Default: 0

DEFAULT_CAN_ACK_STATUS If 1, the VI will be an active CAN bus participant and send low-level ACKs. If the
bus speed is incorrect, can interfere with normal bus operation. This is useful if you are bench testing with 2
VIs and you need the CAN messages to be propagated up the stack.

If 0, the VI will be a listen only node and will not ACK messages. An incorrect bus speed will not have a
negative impact on the bus, but you still won’t be able to read anything.

See the testing section for more details.

Values: 0 or 1

Default: 0

DEFAULT_ALLOW_RAW_WRITE_NETWORK By default, raw CAN message write requests are not allowed from the
network interface even if the CAN bus is configured to allow raw writes - set this to 1 to accept them.

Values: 0 or 1

Default: 0

DEFAULT_ALLOW_RAW_WRITE_UART By default, raw CAN message write requests are not allowed from the
Bluetooth interface even if the CAN bus is configured to allow raw writes - set this to 1 to accept them.

Values: 0 or 1

Default: 0

3.2. Makefile Options 55

OpenXC VI Firmware Documentation, Release 7.0.0

DEFAULT_ALLOW_RAW_WRITE_USB By default, raw CAN message write requests are allowed from the wired
USB interface (if the CAN bus is also configured to allow raw writes) - set this to 0 to block them.

Values: 0 or 1

Default: 1

DEFAULT_OUTPUT_FORMAT By default, the output format is JSON. Set this to PROTOBUF to use a binary output
format, described more in Binary Output Format.

Values: JSON, PROTOBUF

Default: JSON

DEFAULT_RECURRING_OBD2_REQUESTS_STATUS Set this to 1 to include a set of recurring OBD-II requests
in the build, to be requests immediately on startup.

Values: 0 or 1

Default: 0

DEFAULT_POWER_MANAGEMENT Valid options are ALWAYS_ON, SILENT_CAN and
OBD2_IGNITION_CHECK.

Values: ALWAYS_ON, SILENT_CAN, OBD2_IGNITION_CHECK (will cause the VI to write messages to the
bus)

Default: SILENT_CAN

DEFAULT_USB_PRODUCT_ID Change the default USB product ID for the device. This is useful if you want to
address 2 VIs connected to the same computer.

Values: 0x0 to 0xffff

Default: 0x1

DEFAULT_EMULATED_DATA_STATUS Set this to 1 to have the VI generate random data and publish it as OpenXC
vehicle messages.

Values: 0 or 1

Default: 0

DEFAULT_OBD2_BUS Sets the default CAN controller to use for sending OBD-II requests. Valid options are 0
(don’t send any OBD-II requests), 1 or 2. The default value is 1.

Values: 0 (off), 1 or 2

Default: 1

NETWORK By default, TCP output of OpenXC vehicle data is disabled. Set this to 1 to enable TCP output on boards
that have an Network interface. Note that the NETWORK option is broken on the chipKIT Max32 build for the
moment, see https://github.com/openxc/vi-firmware/issues/189.

Values: 0 or 1

Default: 0

3.3 Troubleshooting

If the compilation didn’t work:

• Make sure the submodules are up to date - run git submodule update --init and then git status
and make sure there are no modified files in the working directory.

56 Chapter 3. Compiling

https://github.com/openxc/vi-firmware/issues/189

OpenXC VI Firmware Documentation, Release 7.0.0

• Did you download the .zip file of the vi-firmware project from GitHub? Use git to clone the repository
instead - the library dependencies are stored as git submodules and do not work when using the zip file.

• If you get a lot of errors about undefined reference to getSignals()’ and other functions, you
need to make sure you defined your CAN messages - read through Firmware Configuration before trying to
compile.

3.4 Dependencies

The easiest way to install these dependencies is to use the script/bootstrap.sh script in the vi-firmware repository.
Run the script in Linux, 32-bit Cygwin in Windows or OS X and if there are no errors you should be ready to go:

$ script/bootstrap.sh

If there are errors, continue reading in this section to install whatever piece failed manually.

To compile the VI firmware, you need:

• Git

• vi-firmware source code cloned with Git - not from a .zip file

• OpenXC Python library

• MPIDE

• Digilent’s USB and CAN libraries for the chipKIT

• FTDI driver

• Mini-USB cable

If instead of the chipKIT, you are compiling for the Blueboard (based on the NXP LPC1768/69), instead of MPIDE
you will need:

• GCC for ARM toolchain

• OpenOCD

• JTAG programmer compatible with openocd - we’ve tested the Olimex ARM-OCD-USB programmer.

3.4.1 Source Code

Clone the repository from GitHub:

$ git clone https://github.com/openxc/vi-firmware

Some of the library dependencies are included in this repository as git submodules, so before you go further run:

$ git submodule update --init

If this doesn’t print out anything or gives you an error, make sure you cloned this repository from GitHub with git and
that you didn’t download a zip file. The zip file is missing all of the git metadata, so submodules will not work.

3.4.2 PIC32 Dependencies

If you are planning to build for the PIC32 platforms (e.g. the chipKIT Max32 or C5), you need these dependencies.

3.4. Dependencies 57

https://github.com/openxc/vi-firmware/blob/master/script/bootstrap.sh
http://python.openxcplatform.com

OpenXC VI Firmware Documentation, Release 7.0.0

3.4.3 MPIDE

Building the source for the VI for the chipKIT microcontroller requires MPIDE (the development environment and
compiler toolchain for chipKIT provided by Digilent). Installing MPIDE can be a bit quirky on some platforms, so if
you’re having trouble take a look at the installation guide for MPIDE.

Although we just installed MPIDE, building via the GUI is not supported. We use GNU Make to compile and upload
code to the device. You still need to download and install MPIDE, as it contains the PIC32 compiler.

You need to set an environment variable (e.g. in $HOME/.bashrc) to let the project know where you installed
MPIDE (make sure to change these defaults if your system is different!):

Path to the extracted MPIDE folder (this is correct for OS X)
export MPIDE_DIR=/Applications/Mpide.app/Contents/Resources/Java

Remember that if you use export, the environment variables are only set in the terminal that you run the commands.
If you want them active in all terminals (and you probably do), you need to add these export ... lines to the file
~/.bashrc (in Linux) or ~/.bash_profile (in OS X) and start a new terminal.

3.4.4 Digilent / Microchip Libraries

It also requires some libraries from Microchip that we are unfortunately unable to include or link to as a submodule
from the source because of licensing issues:

• Microchip USB device library (download DSD-0000318 from the bottom of the Network Shield page)

• Microchip CAN library (included in the same DSD-0000318 package as the USB device library)

You can read and accept Microchip’s license and download both libraries on the Digilent download page.

Once you’ve downloaded the .zip file, extract it into the libs directory in this project. It should look like this:

- /Users/me/projects/vi-firmware/
---- libs/
-------- chipKITUSBDevice/

chipKitCAN/
... other libraries

3.4.5 FTDI Driver

If you’re using Mac OS X or Windows, make sure to install the FTDI driver that comes with the MPIDE download.
The chipKIT uses a different FTDI chip than the Arduino, so even if you’ve used the Arduino before, you still need to
install this driver.

3.4.6 LPC176x Dependencies

If you are planning to build for the LPC176x platforms (e.g. the Ford Reference VI), you need these dependencies.

3.4.7 GCC for ARM Toolchain

Download the binary version of the toolchain for your platform (Linux, OS X or Windows) from this Launchpad site.

58 Chapter 3. Compiling

https://github.com/chipKIT32/chipKIT32-MAX/downloads
http://chipkit.org/wiki/index.php?title=MPIDE_Installation
http://digilentinc.com/Products/Detail.cfm?NavPath=2,719,943&Prod=CHIPKIT-NETWORK-SHIELD
http://digilentinc.com/Agreement.cfm?DocID=DSD-0000318
https://launchpad.net/gcc-arm-embedded

OpenXC VI Firmware Documentation, Release 7.0.0

Arch Linux

In Arch Linux you can install arm-none-eabi-gcc, arm-none-eabi-binutils and
arm-none-eabi-gdb from the [community] repository.

3.4.8 OpenOCD

If you plan to flash an LPC17xx based board with JTAG and not use the USB bootloader included with the Ford
Reference VI, you need OpenOCD.

Arch Linux

$ pacman -S openocd

OS X

Install Homebrew. Then:

$ brew install libftdi libusb
$ brew install --enable-ft2232_libftdi openocd

Remove the Olimex sections from the FTDI kernel module, and then reload it:

$ sudo sed -i "" -e "/Olimex OpenOCD JTAG A/{N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;d;}" /System/Library/Extensions/FTDIUSBSerialDriver.kext/Contents/Info.plist
$ sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext/
$ sudo kextload /System/Library/Extensions/FTDIUSBSerialDriver.kext/

3.5 Developing in a Native Host OS

On all platforms, we recommend using the included Vagrant configuration to get compiling as quickly as possible with
a Linux virtual machine (VM).

If you are an advanced developer and you want to compile in your host OS, we may have support for it. Beware tha
there are number of dependencies and we’ve found it finicky to replicate on the huge variety of possible configurations.
Unless you have a compelling reason not to, we strongly recommend using Vagrant.

The dependencies can be installed using the included bootstrap.sh shell script. The script officially supports and
is tested regularly in:

• Ubuntu Linux 13.04 - 14.04

• Arch Linux

and it has unofficial support (i.e. it’s been tested, but not regularly) for:

• Mac OS X Mavericks

• Cygwin in Windows. We’ve found Cygwin can be a huge pain to get consistently set up, so we strongly
discourage you from using it unless you are an expert in debugging Cygwin-specific problems.

Even if you already use Linux, we still recommend using Vagrant to set up a VM. The huge variety of Linux installa-
tions means that it’s often much more pleasant to use the Vagrant VM which has a stable, repeatable setup.

3.5. Developing in a Native Host OS 59

http://mxcl.github.com/homebrew/
http://www.vagrantup.com

OpenXC VI Firmware Documentation, Release 7.0.0

3.5.1 Pre-requisites

Follow the steps in Development Environment Setup to install Git and clone the vi-firmware repository.

3.5.2 Cygwin Pre-Setup

Compiling natively in Windows (e.g. at a Windows Command Prompt) is not supported. Cygwin (32-bit) is unoffi-
cially supported, but is no longer recommended. You’ll be much happier using Vagrant, promise!

If you still wish to use Cygwin, download 32-bit version of Cygwin (even if you’re on 64-bit Windows) and run the
installer - during the installation process, select these packages:

make, gcc-core, patchutils, unzip, python, check, curl, libsasl2, python-setuptools

After it’s installed, open a new Cygwin terminal and configure it to ignore Windows-style line endings in scripts by
running this command:

$ set -o igncr && export SHELLOPTS

3.5.3 Bootstrap

Run the bootstrap.sh script:

$ cd vi-firmware
vi-firmware/ $ script/bootstrap.sh

If there were no errors, you are ready to compile. If there are errors, try to follow the recommendations in the error
messages. You may need to manually install the dependencies if your environment is not in a predictable state. If
you’re stuck, you might seriously consider using Vagrant!

60 Chapter 3. Compiling

http://www.cygwin.com

CHAPTER 4

Supported Embedded Platforms

For information on how to add support for another embedded system, see the board support section.

4.1 Ford Reference Vehicle interface

The Ford Reference VI is an open source hardware implementation of a VI, and the complete documentation is
available at vi.openxcplatform.com.

To build for the Ford reference VI, compile with the flag PLATFORM=FORDBOARD.

4.1.1 Flashing a Pre-compiled Firmware

Pre-compiled binaries (built with the BOOTLOADER flag enabled, see all compiler flags) are compatible with the
OpenLPC USB bootloader - follow the instructions for Flashing User Code to update the vehicle interface.

4.1.2 Compiling

USB Bootloader

If you are running a supported bootloader, you don’t need any special programming hardware. Compile the firmware
to run under the bootloader:

$ fab reference build

The compiled firmware will be located at build/lpc17xx/vi-firmware-lpc17xx.bin. See reference VI
programming instructions to find out how to re-flash the VI.

Bare Metal

Attach a JTAG adapter to your computer and the VI, then compile and flash:

$ export PLATFORM=FORDBOARD
$ export BOOTLOADER=0
$ make clean
$ make -j4
$ make flash

61

http://vi.openxcplatform.com
https://github.com/openxc/openlpc-USB_Bootloader
https://github.com/openxc/openlpc-USB_Bootloader#flashing-user-code
http://vi.openxcplatform.com/firmware/programming/usb.html
http://vi.openxcplatform.com/firmware/programming/usb.html

OpenXC VI Firmware Documentation, Release 7.0.0

The config files in this repository assume your JTAG adapter is the Olimex ARM-USB-OCD unit. If you have a differ-
ent unit, modify the src/lpc17xx/lpc17xx.mk Makefile to load your programmer’s OpenOCD configuration.

4.1.3 UART

The software configuration is identical to the Blueboard. The reference VI includes an RN-41 on the PCB attached to
the RX, TX, CTS and RTS pins, in addition to the UART status pin.

When a Bluetooth host pairs with the RN-42 and opens an RFCOMM connection, pin 0.18 will be pulled high and the
VI will being streaming vehicle data over UART.

4.1.4 Debug Logging

In most cases the logging provided via USB is sufficient, but if you are doing low-level development and need the
simpler UART interface, you can enable it with the DEFAULT_LOGGING_OUTPUT="UART" build option.

Logging will be on UART0, which is exposed on the bottom of the board at J3, a 5-pin ISP connector.

4.1.5 LED Lights

The reference VI has 2 RGB LEDs. If the LEDs are a dim green and red, then the firmware was not flashed properly
and the board is not running.

LED A

• CAN activity detected - Blue

• No CAN activity on either bus - Orange

LED B

• USB connected, Bluetooth not connected - Green

• Bluetooth connected, USB in either state - Blue

• Neither USB or Bluetooth connected - Off

4.1.6 Bootloader

The OpenLPC USB bootloader is tested and working, and enables the LPC17xx to appear as a USB drive. See the
documentation in that repository for instructions on how to flash the bootloader (a JTAG programmer is required). The
reference VI from Ford is pre-programmed with this bootloader.

4.2 NGX Blueboard LPC1768-H

To build for the Blueboard, compile with the flag PLATFORM=BLUEBOARD.

4.2.1 UART

On the LPC17xx, UART1 is used for OpenXC output at the 230000 baud rate. Like on the chipKIT, hardware flow
control (RTS/CTS) is enabled, so CTS must be pulled low by the receiving device before data will be sent.

• Pin 2.0 - UART1 TX, connect this to the RX line of the receiver.

62 Chapter 4. Supported Embedded Platforms

https://github.com/openxc/openlpc-USB_Bootloader

OpenXC VI Firmware Documentation, Release 7.0.0

• Pin 2.1 - UART1 RX, connect this to the TX line of the receiver.

• Pin 2.2 - UART1 CTS, connect this to the RTS line of the receiver.

• Pin 2.7 - UART1 RTS, connect this to the CTS line of the receiver.

UART data is sent only if pin 0.18 is pulled high. If you are using a Bluetooth module like the BlueSMiRF from
SparkFun, you need to hard-wire 5v into pin 0.18 to actually enabling UART. Other hardware implementations (like
the Ford Reference VI) may be able to hook the Bluetooth connection status to this pin instead, to make the status of
UART more dynamic.

4.2.2 UART Debug Logging

In most cases the logging provided via USB is sufficient, but if you are doing low-level development and need the
simpler UART interface, you can enable it with the DEFAULT_LOGGING_OUTPUT="UART" build option.

On the Blueboard LPC1768H, logging will be on UART0 at 115200 baud:

• Pin 0.2 - UART0 TX, connect this to the RX line of the receiver

• Pin 0.3 - UART0 RX, connect this to the TX line of the receiver

4.2.3 LED Lights

LEDs are not currently supported on the Blueboard.

4.3 Digilent chipKIT Max32

To build for the chipKIT-based Vehicle Interface, compile with the flag PLATFORM=CHIPKIT. The chipKIT is also
the default platform, so the flag is optional.

The chipKIT VI supports up to 2 of the CAN1, CAN2-1 or CAN2-2 buses simultaneously.

For more details, see the chipKIT’s documentation.

For instructions on flashing a new firmware version to the chipKIT, see the chipKIT firmware programming documen-
tation.

4.3.1 USB

The micro-USB port on the Digilent Network Shield is used to send and receive OpenXC messages. The mini-USB
cable on the Max32 itself is only used for re-programming.

4.3.2 UART

On the chipKIT, UART1A is used for OpenXC output at the 230000 baud rate. Hardware flow control (RTS/CTS) is
enabled, so CTS must be pulled low by the receiving device before data will be sent. There are a few tricky things to
watch out for with UART (i.e. Bluetooth) output on the chipKIT, so make sure to read this entire section.

UART1A is also used by the USB-Serial connection, so in order to flash the PIC32, the Tx/Rx lines must be discon-
nected. Ideally we could leave that UART interface for debugging, but there are conflicts with all other exposed UART
interfaces when using flow control.

• Pin 0 - U1ARX, connect this to the TX line of the receiver.

4.3. Digilent chipKIT Max32 63

https://www.sparkfun.com/products/10269
http://chipkit-vi.openxcplatform.com/
http://chipkit-vi.openxcplatform.com
http://chipkit-vi.openxcplatform.com/firmware/programming.html
http://chipkit-vi.openxcplatform.com/firmware/programming.html

OpenXC VI Firmware Documentation, Release 7.0.0

• Pin 1 - U1ATX, connect this to the RX line of the receiver.

• Pin 18 - U1ARTS, connect this to the CTS line of the receiver.

• Pin 19 - U1ACTS, connect this to the RTS line of the receiver.

UART data is sent only if pin A1 is pulled low (to ground). If you are using a Bluetooth module like the BlueSMiRF
from SparkFun, you need to hard-wire GND into this pin to actually enabling UART. To disable UART, pull A1 high
(hard-wire to 5v) or leave it floating.

No data received over UART (i.e. Bluetooth)? If you are powering the device via USB but not also reading data via
USB, it may be blocked waiting to send data. Try unplugging the USB connection and powering the device via
the OBD connector.

4.3.3 Debug Logging

In most cases the logging provided via USB is sufficient, but if you are doing low-level development and need the
simpler UART interface, you can enable it with the DEFAULT_LOGGING_OUTPUT="UART" build option, but be
aware that UART logging will dramatically decrease the performance of the VI.

On the chipKIT Max32, UART logging will be on UART2 (Pin 16 - Tx, Pin 17 - Rx) at 115200 baud.

4.3.4 LED Lights

The chipKIT has 1 user controllable LED. When CAN activity is detected, the LED will be enabled (it’s green).

4.3.5 Compiling and Flashing

Attach the chipKIT to your computer with a mini-USB cable, cd into the src subdirectory, build and upload to the
device.

vi-firmware/src/ $ fab chipkit build
vi-firmware/src/ $ make flash

If the flash command can’t find your chipKIT, you may need to set the SERIAL_PORT variable if the serial emulator
doesn’t show up as /dev/ttyUSB* in Linux, /dev/tty.usbserial* in Mac OS X or com3 in Windows. For
example, if the chipKIT shows up as /dev/ttyUSB4:

$ SERIAL_PORT=/dev/ttyUSB4 make flash

and if in Windows it appeared as COM4:

$ SERIAL_PORT=com4 make flash

4.3.6 IDE Support

It is possible to use an IDE like Eclipse to edit and compile the project.

• Follow the directions in the above “Installation” section.

• Install Eclipse with the CDT project

• In Eclipse, go to File -> Import -> C/C++ -> Existing Code as Makefile Project and
then select the vi-firmware/src folder.

64 Chapter 4. Supported Embedded Platforms

https://www.sparkfun.com/products/10269
http://www.eclipse.org/cdt/

OpenXC VI Firmware Documentation, Release 7.0.0

• In the project’s properties, under C/C++ General -> Paths and Symbols, add these to the include
paths for C and C++:

– ${MPIDE_DIR}/hardware/pic32/compiler/pic32-tools/pic32mx/include

– ${MPIDE_DIR}/hardware/pic32/cores/pic32

– /src/libs/CDL/LPC17xxLib/inc (add as a “workspace path”)

– /src/libs/chipKITCAN (add as a “workspace path”)

– /src/libs/chipKITUSBDevice (add as a “workspace path”)

– /src/libs/chipKITUSBDevice/utility (add as a “workspace path”)

– /src/libs/chipKITEthernet (add as a “workspace path”)

– /usr/include (only if you want to use the test suite, which requires the check C library)

• In the same section under Symbols, if you are building for the chipKIT define a symbol with the name
__PIC32__

• In the project folder listing, select Resource Configurations -> Exclude from Build for these
folders:

– src/libs

– build

If you didn’t set up the environment variables from the Installation section (e.g. MPIDE_HOME), you can also
do that from within Eclipse in C/C++ project settings.

There will still be some errors in the Eclipse problem detection, e.g. it doesn’t seem to pick up on the GCC
__builtin_* functions, and some of the chipKIT libraries are finicky. This won’t have an effect on the actual
build process, just the error reporting.

4.3.7 Bootloader

All stock chipKITs are programmed with a compatible bootloader at the factory. The PIC32 avrdude bootloader is
also tested and working and allows flashing over USB with avrdude.

4.4 CrossChasm C5 Interface

CrossChasm’s C5 OBD interface is compatible with the OpenXC VI firmware. To build for the C5, compile with the
flag PLATFORM=CROSSCHASM_C5.

CrossChasm has made the C5 available for purchase from their website, and it comes pre-loaded with the correct
bootloader, so you don’t need any additional hardware to load the OpenXC firmware.

The C5 connects to the CAN1 bus pins on the OBD-II connector.

4.4.1 Flashing a Pre-compiled Firmware

Assuming your C5 has the bootloader already flashed, once you have the USB cable attached to your computer and to
the C5, follow the same steps to upload as for the chipKIT Max32.

The C5 units offered directly from the CrossChasm website are pre-programmed with the bootloader.

4.4. CrossChasm C5 Interface 65

https://github.com/openxc/PIC32-avrdude-bootloader
http://crosschasm.com/SolutionCenter/OpenXC.aspx
http://openxcplatform.com/vehicle-interface/#obd-pins
http://crosschasm.com/SolutionCenter/OpenXC.aspx

OpenXC VI Firmware Documentation, Release 7.0.0

4.4.2 Bootloader

The C5 can be flashed with the same PIC32 avrdude bootloader, as the chipKIT.

The OpenXC fork of the bootloader (the previous link) defines a CROSSCHASM_C5 configuration that exposes a
CDC/ACM serial port function over USB. Once the bootloader is flashed, there is a 5 second window when the unit
powers on when it will accept bootloader commands.

In Linux and OS X it will show up as something like /dev/ACM0, and you can treat this just as if it were a serial device.

In Windows, you will need to install the stk500v2.inf <https://raw.github.com/openxc/PIC32-avrdude-
bootloader/master/Stk500v2.inf> driver before the CDC/ACM modem will show up - download that file, right
click and choose Install. The C5 should now show up as a COM port for for 5 seconds on bootup.

The C5 units offered directly from the CrossChasm website are pre-programmed with the bootloader.

If you need to reflash the bootloader yourself, a ready-to-go .hex file is available in the GitHub repository and you
can flash it with MPLAB IDE/IPE and an ICSP programmer like the Microchip PICkit 3. You can also build it from
source in MPLAB by using the CrossChasm C5 configuration.

4.4.3 Compiling

The instructions for compiling from source are identical to the chipKIT Max32 except that
PLATFORM=CROSSCHASM_C5 instead of CHIPKIT.

If you will not be using the avrdude bootloader and will be flashing directly via ICSP, make sure to also compile with
BOOTLOADER=0 to enable the program to run on bare metal.

4.4.4 USB

The micro-USB port on the board is used to send and receive OpenXC messages.

4.4.5 UART

On the C5, UART1A is used for OpenXC output at the 230000 baud rate. Hardware flow control (RTS/CTS) is enabled,
so CTS must be pulled low by the receiving device before data will be sent.

TODO add pinout of expansion header, probably a picture

UART data is sent only if pin 0.58 (or PORTB BIT 4, RB4) is pulled high (to 5vv). If you are using a Bluetooth
module like the BlueSMiRF from SparkFun, you need to hard-wire 5v into this pin to actually enabling UART. To
disable UART, pull this pin low or leave it floating.

4.4.6 Debug Logging

In most cases the logging provided via USB is sufficient, but if you are doing low-level development and need the
simpler UART interface, you can enable it with the DEFAULT_LOGGING_OUTPUT="UART" build option.

On the C5, logging is on UART3A at 115200 baud (if the firmware was compiled with DEBUG=1).

4.4.7 LED Lights

The C5 has 2 user controllable LEDs. When CAN activity is detected, the green LED will be enabled. When USB or
Bluetooth is connected, the blue LED will be enabled.

66 Chapter 4. Supported Embedded Platforms

https://github.com/openxc/PIC32-avrdude-bootloader
http://crosschasm.com/SolutionCenter/OpenXC.aspx
https://raw.github.com/openxc/PIC32-avrdude-bootloader/master/bootloaders/CrossChasm-C5-USB.hex
https://www.sparkfun.com/products/10269

CHAPTER 5

Advanced Firmware Features

5.1 Low-level CAN Features

The OpenXC message format specification defines a “raw” CAN message type. You can configure the VI firmware to
output raw CAN messages using this format.

For example, this JSON configuration will output all CAN messages received on a high speed bus connecetd to the
CAN1 controller:

{ "name": "passthrough",
"buses": {

"hs": {
"controller": 1,
"raw_can_mode": "unfiltered",
"speed": 500000

}
}

}

The only change from a typical configuration is the addition of the raw_can_mode attribute to the bus, set to
unfiltered. When using the raw CAN configuration, there’s no need to configure any messages or signals.

You may use both simple vehicle messages and CAN message output simultaneously - the 2 message types will be
interleaved on the output interfaces, so you’ll need to check for the right fields before reading the output.

If you’re only interested in a few CAN messages, you can send a filtered set of raw messages. Change the
raw_can_mode to filtered and add the messages ID’s you want:

{ "name": "passthrough",
"buses": {

"hs": {
"controller": 1,
"raw_can_mode": "filtered",
"speed": 500000

}
},
"messages": {

"0x21": {
"bus": "hs"

}
}

}

This will read and send the message with ID 0x21 only.

67

https://github.com/openxc/openxc-message-format#raw-can-message-format

OpenXC VI Firmware Documentation, Release 7.0.0

The raw_can_mode flag can be applied to all active CAN buses at once by defining it at the top level of the
configuration. For example, this configuration will enable unfiltered raw CAN output from 2 buses simultaneously:

{ "name": "passthrough",
"raw_can_mode": "filtered",
"buses": {

"hs": {
"controller": 1,
"speed": 500000

},
"ms": {

"controller": 2,
"speed": 125000

}
}

}

When defined at the top level, the raw_can_mode can be overridden by any of the individual buses (e.g. hs could
inherit the unfiltered setting but ms could override and set it to filtered).

There are yet more ways to configure and control the low-level output (e.g. limiting the data rate as to not overwhelm
the VI’s output channels) - see the raw configuration examples for more information.

5.1.1 Writing to CAN

By default, the CAN controllers on the VI are configured to be in a read-only mode - they won’t even send ACK
frames. If you configure one of the buses to be raw_writable in the firmware configuration, the controller will be
write-enabled for raw CAN messages, e.g.:

{ "name": "passthrough",
"buses": {

"hs": {
"controller": 1,
"raw_can_mode": "unfiltered",
"raw_writable": true,
"speed": 500000

}
}

}

With a writable bus, you can send CAN messages (in the OpenXC “raw” message JSON format) to the VI’s input
interfaces (e.g. USB, Bluetooth) and they’ll be written out to the bus verbatim.

Obviously this is an advanced feature with many security and safety implications. The CAN controllers are configured
as read-only by default for good reason - make sure you understand the risks before enabling raw CAN writes.

For additional security, by default the firmware will not accept raw CAN write requests from remote interfaces even
if raw_writable is true. Write requests from Bluetooth and network connections will be ignored - only USB is
allowed by default. If you wish to write raw CAN messages wirelessly (and understand that those words make security
engineers queasy), compile with the NETWORK_ALLOW_RAW_WRITE or BLUETOOTH_ALLOW_RAW_WRITE flags
(see all compile-time flags).

The raw CAN write support is intended soley for protoyping and advanced development work - for any sort of
consumer-level app, it’s much better to use writable simple vehicle messages.

68 Chapter 5. Advanced Firmware Features

OpenXC VI Firmware Documentation, Release 7.0.0

5.2 Binary Output Format

For applications that need to maximize the amount of data transferred from the vehicle, the firmware includes an
experimental binary output format. Instead of JSON, it uses Google Protocol Buffers to more efficiently pack the
data. Translated-style OpenXC messages are on average 30% smaller when using protobufs instead of JSON, and
raw messages are around 60% smaller. This space savings comes at the cost of decreased flexibility and increased
complexity in receiving and parsing the data.

The firmware does not currently support receiving binary-encoded messages - CAN write requests must still be sent
in JSON.

This output format is supported by the official OpenXC Android library and OpenXC Python library, both of which
will auto-detect the output format being used by an attached VI. The protobuf objects are defined in an experimental
branch in the openxc-message-format repository if you wish to add support to another language or environment.

The output stream uses the common delimiting technique of writing the length of each protobuf message before the
message itself in the stream.

5.2.1 Compiling with Binary Output

To use the binary output format, compile with the DEFAULT_OUTPUT_FORMAT=PROTOBUF environment variable
set (see all compile-time flags).

5.2.2 Motivation

The default output format encodes data from the vehicle as JSON, using the OpenXC message format. There are
JSON formats for both translated and raw messages. The format is human-readable and very simple to parse, but it’s
not very compact.

For one, it representes everything in human-readable text, so for example, the number 999 (which could be stored in
only 10 bits) takes 3 bytes - more than twice the space.

This isn’t an issue for most users, as the output interfaces have plenty of bandwidth (USB is around 125-160 KB/s and
the popular RN-42 Bluetooth tops out at 23KB/s), and the actual amount of data sent from the pre-compiled binary
firmware (from Ford, for example) is only about 3-6KB/s using JSON.

However, some applications need to pull a lot more data out of the car, perhaps by reading raw CAN messages or
reading many signals at high frequencies. These can quickly overwhelm the output pipe using JSON.

5.3 CAN Bench Testing

Normally, the CAN controllers are initialized in a “listen only” mode. They are configured as writable only if using
raw CAN passthrough with a CanBus that is marked writable or if a CanSignal is writable.

This works fine in a vehicle, but when testing on a bench with a simulated CAN network (e.g. another VI sending
CAN messages directly to your VI under test), there’s a problem - every CAN message must be acknowledged by the
controller, and in “listen only” mode it does not send these ACKs. With nobody ACKing on the bus, the messages
never propagate up from the network layer to the VI firmware.

When compiling the VI firmware to use to receive data on a bench test CAN bus, use the
DEFAULT_CAN_ACK_STATUS flag to make sure CAN messages are ACked:

$ make clean
$ DEFAULT_CAN_ACK_STATUS=1 make

5.2. Binary Output Format 69

https://developers.google.com/protocol-buffers/
https://github.com/openxc/openxc-android
http://python.openxcplatform.com
https://github.com/openxc/openxc-message-format/tree/binary-encoding
https://developers.google.com/protocol-buffers/docs/techniques#streaming

OpenXC VI Firmware Documentation, Release 7.0.0

The CAN controllers will also be write-enabled if either CAN bus is configured to accept raw CAN or diagnostic
message requests, or a writable translated signal is included.

5.3.1 Simulating a CAN Network

Speaking of CAN bus bench testing, it’s possible to create a 2-node CAN network on your desk with 2 VIs to test your
firmware. This is especially handy for prototyping new translated signals, since you can record a raw CAN bus trace
from a vehicle and do all of your work inside where it’s warm and comfortable.

Requirements

• 2 VIs

• A female-female OBD-II cable, or whatever combination of cable ends you need to connect one VI directly to
another

• 120 ohm resistors across the H/L CAN wires in that cable or...

– If one VI is a chipKIT, there are jumpers you can flip to enable 120 ohm resistors on each CAN controller
(only one of the VIs needs the resistors)

– If one VI is a Ford prototype, that has the termination resistors enabled by default on version 1.0. In an
updated version that may change, as this is actually a mistake - they should have been only available if you
short a solder jumper.

We recommend building your own cable with female OBD-II connectors from Molex (with the matching crimp con-
nectors and a crimper wired together with 120ohm resistors crimped directly into one end of the cable (some pictures
of a wired cable). We also recommend including the 12v and a ground wire, and shaving off a little ring of insulation
on each at one end of the connector so you can inject bus power if needed. Make sure to offset the sections of shaved
off insulation by a half inch so they don’t short.

Alternatively, there are OBD-II splitter cables available online that may also work, but these have not been tested.

5.3.2 Preparing the Transmitter

1. Decide which of the VIs is the transmitter and which is the receiver. The receiver is most like your VI under
test.

2. Follow the normal firmware build process (the CAN signals defined don’t matter, just the bus speeds) but set
the TRANSMITTER environment variable: TRANSMITTER=1 make. This changes the USB product ID from
1 to 2, so you can address the transmitter VI independently from the receiver. TODO create a transmitter config
file with raw writable bus and no power management.

5.3.3 Preparing the Receiver

Compile the VI firmware for the receiver as usual, but instead of just make, run DEFAULT_CAN_ACK_STATUS=1
make This configures the CAN controllers as write-enabled, so that your VI under test can ACK the CAN messages.
If nobody on the bus ACKs, you will receive nothing. In a car there are usually many other things ACKing, so we can
be “listen only”.

70 Chapter 5. Advanced Firmware Features

http://www.digikey.com/product-search/en?mpart=0511151601&vendor=900
http://www.digikey.com/product-search/en?mpart=0504208000&vendor=900
http://www.digikey.com/product-search/en?mpart=0504208000&vendor=900
http://www.digikey.com/catalog/en/partgroup/premiumgrade-obd-ii-50420/22595
https://plus.google.com/photos/108408483770573977605/albums/5931052847037606033?authkey=CMeO7oewgMP2bA
https://plus.google.com/photos/108408483770573977605/albums/5931052847037606033?authkey=CMeO7oewgMP2bA

OpenXC VI Firmware Documentation, Release 7.0.0

5.3.4 Sending Data on the Bus

You need a pre-recorded raw CAN trace file from a vehicle. To create one, compile the firmware in the passthrough
mode (see the low-level CAN docs) and flash a VI, then use openxc-dump to receive the raw messages - point that
at a file on disk to create a trace.

With a raw CAN trace file named raw-can-trace.json:

$ openxc-control writeraw --usb-product 2 -f raw-can-trace.json

That will send all of the message in the file, correctly spaced according to the timestamps. If you want to send
continuously, you can loop the file like this:

$ watch -n 0 openxc-control writeraw --usb-product 2 -f raw-can-trace.json

5.3.5 Receiving Data

Receive data as usual from the VI under test, as if it was in real car.

5.4 Board Support

The code base is expanding very organically from supporting only one board to supporting multiple architectures and
board variants. The strategy we have now:

• Switch between “platforms” with the PLATFORM flag - a platform encapsulates a micro architecture and a
board variant.

• Implement different architecture-specific code in a subfolder for the micro

• Switch pins for board variants in in those same architecture-specific files (like in lights.cpp)

5.4. Board Support 71

OpenXC VI Firmware Documentation, Release 7.0.0

72 Chapter 5. Advanced Firmware Features

CHAPTER 6

I/O, Data Format and Commands

The OpenXC message format is specified and versioned separately from any of the individual OpenXC interfaces or
libraries, in the OpenXC Message Format repository.

6.1 Commands

The firmware supports all commands defined in the OpenXC Message Format specification. Both UART and USB
interfaces accept commands (serialized as JSON) sent in the normal data stream back to the VI.

The payload format of the commands is specified in the OpenXC Message Format and will not be repeated here.

The tools from the OpenXC Python library can send all of these commands and are a good way to get started. Examples
of the terminal commands to use are included here.

6.1.1 Simple Vehicle Message Writes

Simple vehicle message write commands require that the firmware is pre-configured to understand the named signal,
and also allows it to be written.

openxc-control write --name seat_position --value 20

6.1.2 CAN Message Writes

The CAN message write requires that the VI is configured to allow raw writes to the given CAN bus. If the bus
attribute is omitted, it will write the message to the first CAN bus found that permits writes.

openxc-control write --bus 1 --id 1234 --value 0x12345678

6.1.3 Diagnostic Requests

The diagnostic request command requires that the VI is configured to allow raw writes to the given CAN bus (with the
raw_writable flag in the config file). If the bus attribute is omitted, it will write the message to the first CAN bus
found that permits writes.

openxc-diag --bus 1 --id 1234 --mode 1 --pid 5

73

https://github.com/openxc/openxc-message-format
https://github.com/openxc/openxc-message-format
http://python.openxcplatform.com/en/latest/

OpenXC VI Firmware Documentation, Release 7.0.0

6.1.4 Version Query

openxc-control version

6.1.5 Device ID Query

openxc-control id

6.1.6 Set CAN Message Passthrough Status

openxc-control set --passthrough --bus 1

6.1.7 Set CAN Acceptance Filter Bypass

openxc-control set --af-bypass --bus 1

6.1.8 Set Payload Format

openxc-control set --new-payload-format protobuf

6.2 UART (Serial, Bluetooth)

The UART (or serial) connection for a VI is often connected to a Bluetooth module, e.g. the Roving Networks RN-41
on the Ford Reference VI. This allows wireless I/O with the VI.

The VI will send all messages it is configured to received out over the UART interface using the OpenXC message
format. The data may be serialized as either JSON or protocol buffers, depending on the selected output format. Each
message is followed by a \r\n delimiter.

The UART interface also accepts all valid OpenXC commands. JSON is the only support format for commands in this
version. Commands must be delimited with a \0 (NULL) character.

For details on your particular platform (i.e. the baud rate and pins for UART on the board) see the supported platforms.

6.3 USB Device

The VI is configured as a USB device, so you can connect it to a computer or mobile device that supports USB OTG.
USB is best if you need to stream a lot of to or from the VI - the UART connection caps out at around 23KB/s, but
USB can go about 100KB/s.

The VI will publish all messages it is configured to received to USB bulk IN endpoint 2 using the OpenXC message
format. The data may be serialized as either JSON or protocol buffers, depending on the selected output format. Each
message is followed by a \r\n delimiter. A larger read request from the host request will allow more messages to
be batched together into one USB request and give high overall throughput (with the downside of introducing delay
depending on the size of the request).

74 Chapter 6. I/O, Data Format and Commands

OpenXC VI Firmware Documentation, Release 7.0.0

Bulk OUT endpoint 5 will accept valid OpenXC commands from the host, serialized as JSON (the Protocol Buffer
format is not supported for commands). Commands must be delimited with a \0 (NULL) character. Commands must
be no more than 256 bytes (4 USB packets).

Finally, the VI publishes log messages to bulk IN endpoint 11 when compiled with the DEBUG flag. The log messages
are delimited with \r\n.

If you are using one of the support libraries (e.g. openxc-python or openxc-android, you don’t need to worry about the
details of the USB device driver, but for creating new libraries the endpoints are documented here.

6.3.1 Control Transfers

Transfer request type: 0x83

The VI accepts USB control requests on the standard endpoint 0 where the payload is a standard OpenXC message
format command meessage (e.g. version, device ID, or diagnostic request, etc).

The responses are injected into the normal output data stream usig the same format as the version query, device ID
query, etc.

6.3. USB Device 75

https://github.com/openxc/openxc/python
https://github.com/openxc/openxc-android

OpenXC VI Firmware Documentation, Release 7.0.0

76 Chapter 6. I/O, Data Format and Commands

CHAPTER 7

Testing

7.1 Windows USB Device Driver

If you want to send and receive vehicle data in Windows via USB, you must install the VI Windows Driver.

7.2 Python Library

The OpenXC Python library, in particular the openxc-dashboard tool, is useful for testing a VI. A quick “smoke
test” using the Python tools is described in the Getting Started Guide for Python developers at the OpenXC website.

Keep in mind when bench testing that the VI will suspend if no CAN bus activity is detected. Compiled with
DEFAULT_POWER_MANAGEMENT=ALWAYS_ON to stop this behavior, but don’t leave it plugged into your car with
power management off.

7.3 Debugging

To view debugging information, first compile the firmware with the debugging flag:

$ make clean
$ DEBUG=1 make
$ make flash

When compiled with DEBUG=1, two things happen:

• Debug symbols are available in the .elf file generated in the build directory.

• Log messages will be output over a separate USB endpoint required) - see I/O, Data Format and Commands for
details. You can optionally enable logging via UART with the DEFAULT_LOGGING_OUTPUT config option,
but there may be a performance hit - see the Makefile Options.

To view the logs via USB, you can use the --log-mode flag with the Python CLI tools. See the --help text for
any of those tools for more information.

To view UART logs, you can use an FTDI cable and any of the many available serial terminal monitoring programs,
e.g. screen, minicom, etc. The pins for this UART output are different for each board, so see the platform specific
docs.

77

https://github.com/openxc/vi-windows-driver
https://github.com/openxc/openxc-python
http://openxcplatform.com/python/getting-started.html

OpenXC VI Firmware Documentation, Release 7.0.0

7.4 Test Suite

The non-embedded platform specific code in this repository includes a unit test suite. It’s a good idea to run the test
suite before committing any changes to the git repository.

The test suite uses the check library. It should already be installed if you used bootstrap.sh to set up your
development environment.

7.4.1 Running the Suite

vi-firmware/src $ make clean && make test

7.5 Functional Test Suite

For a complete functional test of the firmware code on the support hardware platforms, the repository includes an
automated script to program a VI and run a self-test. The VIs are configured to self-receive every CAN message they
send, allowing the complete firmware stack to be tested without any physical CAN configuration. The test script is
written in Python and uses the OpenXC Python library send commands to the VI, read responses and receive the test
vehicle data.

The functional test suite is currently supported on the:

• Ford Reference VI

• chipKIT VI

7.5.1 Running the Suite

MAke sure you have the following connected to your development machine:

• Reference VI via USB

• USB JTAG programming connected to the refernece VI

• chipKIT micro-USB (for OpenXC interface)

• chipKIT mini-USB (for programming)

Then run the automated functional test suite:

vi-firmware/ $ fab auto_functional_test

which will program each of the VIs and run the tests on them independently. The process takes a couple of minutes.

78 Chapter 7. Testing

http://check.sourceforge.net

CHAPTER 8

Contributing

Please see our Contributing Guide.

8.1 Mailing list

For discussions about the usage, development, and future of OpenXC, please join the OpenXC mailing list.

8.2 Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at
http://github.com/openxc/vi-firmware/issues/

8.3 Authors and Contributors

A complete list of all authors is stored in the repository - thanks to everyone for the great contributions.

8.3.1 Related Projects

8.4 Python Library

The OpenXC Python library, in particular the openxc-dashboard tool, is useful for testing the VI with a regular
computer, to verify the data received from a vehicle before introducing an Android device. Documentation for this
tool (and the list of required dependencies) is available on the OpenXC vehicle interface testing page.

8.5 Android Library

The OpenXC Android library is the primary entry point for new OpenXC developers. More information on this library
is available at in the applications section of the OpenXC website.

79

https://github.com/openxc/vi-firmware/blob/master/CONTRIBUTING.mkd
http://groups.google.com/group/openxc
http://github.com/openxc/vi-firmware/issues/
https://github.com/openxc/openxc-python/blob/master/CONTRIBUTORS
https://github.com/openxc/openxc-python
http://openxcplatform.com/vehicle-interface/testing.html
https://github.com/openxc/openxc-android
http://openxcplatform.com/android/index.html
http://openxcplatform.com

OpenXC VI Firmware Documentation, Release 7.0.0

80 Chapter 8. Contributing

CHAPTER 9

License

Copyright (c) 2012-2014 Ford Motor Company

Licensed under the BSD license.

This software depends on other open source projects, and a binary distribution may contain code covered by other
licenses.

81

	Getting Started
	Development Environment Setup
	Testing with Emulated Data
	Compiling the Default Configuration
	Customizing the VI Configuration
	Compiling with a Custom Configuration

	Firmware Configuration
	Read-only Configuration Examples
	Read-only Raw CAN Configuration Examples
	Custom Handler Configuration
	Writable Configuration Examples
	Writable Raw CAN Configuration Examples
	Diagnostic Configuration Examples
	Bit Numbering and Byte Order
	All Configuration Options Reference
	FAQ

	Compiling
	Example Build Configurations
	Makefile Options
	Troubleshooting
	Dependencies
	Developing in a Native Host OS

	Supported Embedded Platforms
	Ford Reference Vehicle interface
	NGX Blueboard LPC1768-H
	Digilent chipKIT Max32
	CrossChasm C5 Interface

	Advanced Firmware Features
	Low-level CAN Features
	Binary Output Format
	CAN Bench Testing
	Board Support

	I/O, Data Format and Commands
	Commands
	UART (Serial, Bluetooth)
	USB Device

	Testing
	Windows USB Device Driver
	Python Library
	Debugging
	Test Suite
	Functional Test Suite

	Contributing
	Mailing list
	Bug tracker
	Authors and Contributors
	Python Library
	Android Library

	License

